
WHITE PAPER

Overhead of Database
Native Auditing in the
Real World

file:/Users/simonle/Desktop/Simon%20Le/Imperva/assets/DB2%20Blue.png

imperva.com2 Overhead of Database Native Auditing in the Real World - Whitepaper

Auditing-related overhead imposed on databases is one of the most misunderstood
topics in the field of database security, both when using native capabilities as well
as when using DAM agents. Native auditing subsystems have evolved quite a bit
over the past 10 years, to the point where the performance impact on the databases
for data collection is on par with agent-based collection. Since monitoring/auditing
overhead differs not only in the collection method but more so on the auditing policy
and the amount of data collected, any statement that asserts overhead will be X% is
misleading and merely a way to dismiss a frank review.

This whitepaper provides summary empirical results of overhead using native
methods based on real-world scenarios. It summarizes observed results for the most
common cases and then provides a discussion on how these results can be used
to extrapolate to additional scenarios. Since an understanding of “how things work”
will help you better understand the numerical results put forth in this whitepaper,
we strongly recommend that you read Imperva’s “Understanding the Overhead
of Database Monitoring & Auditing” prior to reading this as it provides a thorough
discussion of the internals.

The numbers presented are consistent across multiple database platforms (both
RDBMSs and NoSQL) so long as the version of the database is from approximately
the last decade. Very old database versions have in the past logged audit data in a
synchronous manner and therefore exhibit higher overhead. However, even in these
very old versions a realistic audit policy usually implies audit events that are still under
10% overhead (whereas modern databases, as shown below, are well under 5%).

Finally, measurements were also made using DAM agents in the lab. Agent overhead
was found to be similar to using agent-less techniques in all practical scenarios,
including scenarios that cannot be implemented using connection-based approaches
such as monitoring access to sensitive data or monitoring based on privileges and
admin commands.

1. Description of measured scenarios

The presented scenarios are based on real-world audit and security use cases. While
dozens of scenarios were measured, they all fall into two activity-level scenarios
(along with combinations of these).

Connection-level scenarios mean that some connections are fully audited, and others
are not audited at all. An example is privileged user monitoring using connection
attributes such as the username, the program name, the client IP, or any such
tuple. Conversely, the policy may be based on excluding certain connection tuples
representing the application servers. The effect in terms of performance overhead is
the same since what matters is how many log records are produced. Evaluation (the
“if” part) is done upon connection.

Activity-level scenarios mean that the determination of what to audit can only be
made based on the SQL, or what is actually being performed. This includes sensitive-
data policies where access to certain tables/objects needs to be logged, where usage
of certain commands need to be logged (including for example security commands
like create user or export commands that are performed no matter by whom), or
where certain privileges are used no matter what the connection tuple is.

“The granular nature
and precise control
supported by audit
policies in modern
databases ensure that
the overhead measured
both as CPU overhead
and, more importantly, as
impact to workloads and
response times remain
low (under 5%). This is
true across database
platforms, workload
types, host loads, and
scenarios.”

- Ron Bennatan, SVP & GM, Data
Security, Imperva.

http://www.imperva.com

imperva.com3 Overhead of Database Native Auditing in the Real World - Whitepaper

In these cases, multiple results were aggregated differing in both workload type as
well as what percentage of the activities need to be logged.

2. Overhead results

It’s important to define exactly what “overhead” means. The easiest thing to do is to
look at the CPU utilization and measure how much harder the machine is working.
That is what most logging and auditing benchmarks do and what we originally did
because it is the easiest thing to measure. As an example, Figure 1 shows Oracle
processes running a heavy workload together with a medium access-level monitoring
policy. The main Oracle processes (these starting with oracle_227) are serving the
applications and consuming full cores (i.e., they are efficient). The three processes
at the bottom, ora_lg** are the ones doing the auditing and together remain below
5%. Note that this is not 5% of the machine – i.e., the 2.0% used by ora_lg00 is 2% of
a single core. Heavier audit policies will require more resources but not even coming
close to what the application workloads are. Also, note that there is practically no
system time used (55.4% user and 0.6% system). This is contrary to scenarios using
DAM agents that consume system resources that affect everything running on
the system. 

But this is not exactly what matters most. We are trying to determine the impact
on systems when adding monitoring. Therefore, the results summarized below
measure not a CPU utilization but rather the relative slowdown in terms of looking at a
complete workload from start to finish that simulates a complex application, applying
different policies while the workload is running, and observing how long it takes for
the entire workload to complete. This is the only way to truly gauge the impact
of monitoring.

http://www.imperva.com

imperva.com4 Overhead of Database Native Auditing in the Real World - Whitepaper

It was especially surprising to see how different impact on workloads is vs. CPU
utilization when measuring DAM agents. Because DAM agents also involve kernel
modules, much of the overhead of auditing is reported as system time and looking
just at CPU consumption by processes is misleading. We often saw cases where the
CPU of the agents was showing X% (e.g., 5%) but the impact on workloads finishing
was 2X and sometimes even 3X (e.g., 10% - 15%).

The results below are based on a complex workload that includes application
connections and “privileged” / “interactive” user sessions. The majority of queries are
performed by the app sessions and overhead is measured by how much longer all
the app sessions take to fully complete the work. Specifically, between 1% and 3%
of all work is done by the admin/privileges sessions that are fully logged. Within the
app connections (the app workload), some commands are logged and other are not.
This granular monitoring – for example, access to sensitive tables, performing certain
activities such as exports, or using elevated privileges (that can be hijacked) is not
possible with DAM agents. Four cases were measured - logging 10% of all activity,
20% of all activity, 50% of all activity and 100% of all activity. Finally, because some
database queries are faster than others (e.g., updates usually take longer than index-
based selects) two different profiles were done – one with many updates and one
with almost only SELECTs. Since overhead is measured in percentage, when queries
perform very quickly the overhead is larger even though the audit time takes exactly
the same time and resources (this is another reason why measuring impact is better
than measuring CPU time).

Finally, the measurements were taken on heavily loaded servers (see Figure 1). This
is important since a lightly-loaded box or a big box with a workload that does not
stretch the server will often have even lower overhead because writing audit records
is done asynchronously and therefore if there is no contention on resources, overhead

POLICY TYPE WORKLOAD TYPE PERCENTAGE OF ACTIVITY LOGGED OVERHEAD #

MONITORING ADMIN
SESSIONS ONLY

ALL ALL 0-1% 1

MONITORING ALL SESSIONS

MIXED WORKLOAD LOGGING 5% OF QUERIES
LOGGING 10% OF QUERIES
LOGGING 20% OF QUERIES

0.5-1%
1-1.5%
1.5-2.%

2
3
4

FAST QUERIES ONLY LOGGING 5% OF QUERIES
LOGGING 10% OF QUERIES
LOGGING 20% OF QUERIES

1%
1.5-2%
2-3%

5
6
7

MONITOR AND LOG ALL
ACTIVITY (100% LOGGING)

MIXED WORKLOAD
FAST QUERIES ONLY

LOGGING 100% OF QUERIES 2-3%
3-4.5%

8
9

http://www.imperva.com

imperva.com5 Overhead of Database Native Auditing in the Real World - Whitepaper

3. Example Audit Scenarios

Section 4 of the “Understanding the Overhead of Database Monitoring & Auditing”
whitepaper presents the common requirements for monitoring activity in a database:

1.	 (Only) privileged user monitoring.

2.	 Privileged activities monitoring.

3.	 Sensitive data access monitoring.

4.	 Monitoring changes to critical data.

5.	 Full monitoring and logging.

For each of these scenarios the observed overhead is small, specifically:

3.1 (Only) Privileged-user Monitoring

Privileged-user monitoring involves an audit policy that audits all activities performed
by DBAs, security admin, as well as activities performed using fire IDs and some
service accounts. These audit policies can use fixed lists of which users/ connections
to monitor or, conversely, could involve a list of users/connections not to monitor –
i.e., rather than say which users to monitor, one defines which connections to omit
(e.g., application server connections). This is the simplest possible audit policy,
usually has the lowest overhead, and matches row #1. Imperva architecture enables
movement towards a more open policy without the risk of blowing up appliances
based on the leveraging of Big Data technologies.

3.2 Privileged-activities Monitoring

Privileged-activities monitoring is a refinement of 3.1 that prevents bypass and
complex list management. The problem with 3.1 is that when fixed lists are created,
they can easily be bypassed, and they need to be constantly updated. If a privileged
user knows that a certain app account is not being monitored, they can log in using
that account and fly under the radar. If a fixed list of privileged users is used to decide
what connections to monitor, one can create a new user that will be used to perform
malicious activity and no one will be the wiser. Since the compliance requirements are
actually about administrative activities and privileges, it is sometimes better to base
the audit on these activities and not on the connection attributes. Thus, if an app
session starts performing problematic commands such as creating users, it will not
be  ignored.

With an agentless approach, the overhead is still row #1. Using agent-based
interception to implement this scenario means that all activities bar none need to be
copied and sent to the appliance for analysis. This is because the agent cannot look
into the SQL – the SQL is only analyzed by the code running on the appliance. This
scheme implies high overload on the host, agent and DAM appliance.

http://www.imperva.com

Copyright © 2021 Imperva. All rights reserved

Overhead of Database Native Auditing in the Real World imperva.com
+1.866.926.4678

3.3 Sensitive Data Access Monitoring

Sensitive data monitoring is second only to monitoring elevated privileges. Sensitive
data monitoring is common in privacy regulations, PII/ NPI-based requirements, PCI
and more. It differs from 3.1 in that it requires broad monitoring/ auditing when anyone
accesses sensitive data. It is also needed in order to create baselines and profiles
even for app access so that AI and machine learning can be used to discover issues in
excessive access to sensitive data.

Similar to 3.2, agent-based interception means that all data needs to be copied, sent,
and analyzed by the DAM appliance - thus high overhead is observed. The reason
is the same – the DAM agent has no awareness of what object is being used and
therefore all SQL needs to be shipped to the DAM appliance. Here too, native auditing
provides selective control to audit all actions and even specific actions on specific
objects (such as READ vs WRITE).

Overhead in the native approach is shown in rows 5-7 depending on the workload
type and the percentage of activity against the sensitive tables.

3.4 Monitoring Changes To Critical Data

Overhead is one of rows 2-4 depending on the percentage of activity against the
sensitive tables.

3.5 Monitor And Log Everything

It may surprise many that have done database audit benchmarks decades ago
that even policies that log everything have very little impact on the application
performance. Results are shown in row 8 and 9. In fact, on some systems (for
example, modern versions of Oracle) we even observed as little and 2.5% overhead
even when logging everything and even when queries were mostly SELECTs.

4. Summary

The granular nature and precise control supported by audit policies in modern
databases ensure that the overhead measured both as CPU overhead and, more
importantly, as impact to workloads and response times remain low (under 5%). This
is true across database platforms, workload types, host loads, and scenarios. This is
also common across both on-prem and cloud database as a service.

http://www.imperva.com
https://www.imperva.com/

