Data Masking

9.5k views
DataSecEssentialsRegulation & Compliance

What is Data Masking?

Data masking is a way to create a fake, but a realistic version of your organizational data. The goal is to protect sensitive data, while providing a functional alternative when real data is not needed—for example, in user training, sales demos, or software testing.

Data masking processes change the values of the data while using the same format. The goal is to create a version that cannot be deciphered or reverse engineered. There are several ways to alter the data, including character shuffling, word or character substitution, and encryption.

How data masking works

How data masking works

Why is Data Masking Important?

Here are several reasons data masking is essential for many organizations:

  • Data masking solves several critical threats – data loss, data exfiltration, insider threats or account compromise, and insecure interfaces with third party systems.
  • Reduces data risks associated with cloud adoption.
  • Makes data useless to an attacker, while maintaining many of its inherent functional properties.
  • Allows sharing data with authorized users, such as testers and developers, without exposing production data.
  • Can be used for data sanitization – normal file deletion still leaves traces of data in storage media, while sanitization replaces the old values with masked ones.

Data Masking Types

There are several types of data masking types commonly used to secure sensitive data.

Static Data Masking

Static data masking processes can help you create a sanitized copy of the database. The process alters all sensitive data until a copy of the database can be safely shared. Typically, the process involves creating a backup copy of a database in production, loading it to a separate environment, eliminating any unnecessary data, and then masking data while it is in stasis. The masked copy can then be pushed to the target location.

Deterministic Data Masking

Involves mapping two sets of data that have the same type of data, in such a way that one value is always replaced by another value. For example, the name “John Smith” is always replaced with “Jim Jameson”, everywhere it appears in a database. This method is convenient for many scenarios but is inherently less secure.

On-the-Fly Data Masking

Masking data while it is transferred from production systems to test or development systems before the data is saved to disk. Organizations that deploy software frequently cannot create a backup copy of the source database and apply masking—they need a way to continuously stream data from production to multiple test environments.

On the fly, masking sends smaller subsets of masked data when it is required. Each subset of masked data is stored in the dev/test environment for use by the non-production system.

It is important to apply on-the-fly masking to any feed from a production system to a development environment, at the very beginning of a development project, to prevent compliance and security issues.

Dynamic Data Masking

Similar to on-the-fly masking, but data is never stored in a secondary data store in the dev/test environment. Rather, it is streamed directly from the production system and consumed by another system in the dev/test environment.

Data Masking Techniques

Let’s review a few common ways organizations apply masking to sensitive data. When protecting data, IT professionals can use a variety of techniques.

Data Encryption

When data is encrypted, it becomes useless unless the viewer has the decryption key. Essentially, data is masked by the encryption algorithm. This is the most secure form of data masking but is also complex to implement because it requires a technology to perform ongoing data encryption, and mechanisms to manage and share encryption keys

Data Scrambling

Characters are reorganized in random order, replacing the original content. For example, an ID number such as 76498 in a production database, could be replaced by 84967 in a test database. This method is very simple to implement, but can only be applied to some types of data, and is less secure.

Nulling Out

Data appears missing or “null” when viewed by an unauthorized user. This makes the data less useful for development and testing purposes.

Value Variance

Original data values are replaced by a function, such as the difference between the lowest and highest value in a series. For example, if a customer purchased several products, the purchase price can be replaced with a range between the highest and lowest price paid. This can provide useful data for many purposes, without disclosing the original dataset.

Data Substitution

Data values are substituted with fake, but realistic, alternative values. For example, real customer names are replaced by a random selection of names from a phonebook.

Data Shuffling

Similar to substitution, except data values are switched within the same dataset. Data is rearranged in each column using a random sequence; for example, switching between real customer names across multiple customer records. The output set looks like real data, but it doesn’t show the real information for each individual or data record.

Pseudonymisation

According to the EU General Data Protection Regulation (GDPR), a new term has been introduced to cover processes like data masking, encryption, and hashing to protect personal data: pseudonymization.

Pseudonymization, as defined in the GDPR, is any method that ensures data cannot be used for personal identification. It requires removing direct identifiers, and, preferably, avoiding multiple identifiers that, when combined, can identify a person.

In addition, encryption keys, or other data that can be used to revert to the original data values, should be stored separately and securely.

Data Masking Best Practices

Determine the Project Scope

In order to effectively perform data masking, companies should know what information needs to be protected, who is authorized to see it, which applications use the data, and where it resides, both in production and non-production domains. While this may seem easy on paper, due to the complexity of operations and multiple lines of business, this process may require a substantial effort and must be planned as a separate stage of the project.

Ensure Referential Integrity

Referential integrity means that each “type” of information coming from a business application must be masked using the same algorithm.

In large organizations, a single data masking tool used across the entire enterprise isn’t feasible. Each line of business may be required to implement their own data masking due to budget/business requirements, different IT administration practices, or different security/regulatory requirements.

Ensure that different data masking tools and practices across the organization are synchronized, when dealing with the same type of data. This will prevent challenges later when data needs to be used across business lines.

Secure the Data Masking Algorithms

It is critical to consider how to protect the data making algorithms, as well as alternative data sets or dictionaries used to scramble the data. Because only authorized users should have access to the real data, these algorithms should be considered extremely sensitive. If someone learns which repeatable masking algorithms are being used, they can reverse engineer large blocks of sensitive information.

A data masking best practice, which is explicitly required by some regulations, is to ensure separation of duties. For example, IT security personnel determine what methods and algorithms will be used in general, but specific algorithm settings and data lists should be accessible only by the data owners in the relevant department.

Data Masking with Imperva

Imperva is a security solution that provides data masking and encryption capabilities, letting you obfuscate sensitive data so it would be useless to an attacker, even if somehow extracted.

In addition to providing data masking, Imperva’s data security solution protects your data wherever it lives—on premises, in the cloud, and in hybrid environments. It also provides security and IT teams with full visibility into how the data is being accessed, used, and moved around the organization.

Our comprehensive approach relies on multiple layers of protection, including:

  • Database firewall—blocks SQL injection and other threats, while evaluating for known vulnerabilities.
  • User rights management—monitors data access and activities of privileged users to identify excessive, inappropriate, and unused privileges.
  • Data loss prevention (DLP)—inspects data in motion, at rest on servers, in cloud storage, or on endpoint devices.
  • User behavior analytics—establishes baselines of data access behavior, uses machine learning to detect and alert on abnormal and potentially risky activity.
  • Data discovery and classification—reveals the location, volume, and context of data on-premises and in the cloud.
  • Database activity monitoring—monitors relational databases, data warehouses, big data, and mainframes to generate real-time alerts on policy violations.
  • Alert prioritization—Imperva uses AI and machine learning technology to look across the stream of security events and prioritize the ones that matter most.