
SQL Injection Signatures Evasion
An overview of why SQL Injection signature protection is just not enough
(Or: How Autolycus got past the fortress guards)

April 2004

Written by
Ofer Maor, Application Defense Center Manager
Amichai Shulman, Chief Technology Officer

2

Table of Contents

Abstract ... 3

Introduction... 4

Recognizing Signature Protection... 5

Common Evasion Techniques.. 7

Different Encodings...7

White Spaces Diversity ...7

TCP Fragmentation...7

Advanced Evasion Techniques .. 8

The 'OR 1=1' Signature...8

Evading Signatures with White Spaces10

Evading Any String Pattern...12

Conclusion ... 14

References .. 16

SQL Injection Signatures
Evasion

3

Abstract

In recent years, Web application security has become a focal center
for security experts. Application attacks are constantly on the rise,
posing new risks for the organization. One of the most dangerous
and most common attack techniques is SQL Injection1, which usually
allows the hacker to obtain full access to the organization's
Database.

With the rise in SQL Injection attacks, security vendors have begun
to provide security measures to protect against SQL Injection. The
first ones to claim such protection have been the various Web
Application Firewall vendors, followed by most IDS/IPS vendors.

Most of this protection, however is Signature based. This is obviously
the case with common IDS/IPS vendors, as they come from the
network security world, and revolve around signature-based
protection. However, most of the Web Application Firewalls base
their SQL Injection protection on signatures as well. This is due to the
fact that they inspect HTTP traffic only, and are able to look for attack
patterns only within HTTP traffic. Moreover, it has lately become a
common belief that signatures are indeed sufficient for SQL Injection
protection. This belief has been backed up by an article recently
published2, describing, allegedly, a thorough guide for building SQL
Injection signatures, in Snort™-like format.

The research done at Imperva's Application Defense Center shows,
however, that providing protection against SQL Injection using
signatures only is not enough. This paper demonstrates various
techniques that can be used to evade SQL Injection signatures,
including advanced techniques that were developed during the
research.

The paper further demonstrates why these techniques are actually
just the tip of the iceberg of different evasion techniques, due to the
richness of the SQL language. Eventually, the conclusion that the
research leads to is that providing protection against SQL Injection
using only signatures is simply not practical. A reasonably sized
signature database will never be complete, while an attempt to create
a complete comprehensive signature database, even if theoretically
possible, will yield an amount of signatures that is impossible to
handle while maintaining a reasonable performance requirement, and
is likely to generate too many false positives.

1 The paper assumes that the reader has basic understanding of SQL Injection. Although this
is not a mandatory requirement, it is advisable that the reader will be familiar with the basic
concepts of SQL Injection.
2 The article, named 'Detection of SQL Injection and Cross-site Scripting Attacks', written by
K.K. Mookhey and Nilesh Burghate was published on March 2004 in SecurityFocus™.

4

Introduction

In this paper, we will look at a theoretical hacker, named Autolycus.
In Greek mythology, Autolycus was an accomplished thief and
trickster. He was a son of the god Hermes, who gave him the power
of invisibility, a trait required for evading detection.

In ancient times, Autolycus spent his days sneaking into fortresses,
through the main gate, pretending to be no other than a mere visitor.
Once in the fortress, Autolycus headed towards the treasury and
stole its entire contents. In modern times Autolycus found out that
breaking into a system through the exposed Web application and
stealing the entire contents of the database is as much fun, and
involves substantially less physical risk.

One of Autolycus’s most favorite techniques is called SQL injection.
This technique allows him not only to steal the entire contents of
databases but to make arbitrary changes to data as well. Autolycus
has mastered this technique so well that by now he is now able to
reach the treasury even when blindfolded3.

When Autolycus first approaches our fortress he knows, as usual,
nothing or very little about it. He is, however, determined as ever, to
get through the main gate, sneak into the treasury, and steal what he
thinks should be his. Based on his recent experiences, Autolycus
believes today will not be any different, and proceeds through the
main gate.

What Autolycus does not know at this point, however, is that a new
old guard, known by the name of Signatorious, has been posted to
our fortress. Signatorious has been around since the 'old days', when
network security was the main issue. Back then Signatorious was
posted to the external walls. Now, he is asked to examine all the
passersby going through the main gate. Although unable to see
Autolycus (he is invisible, after all), Signatorious has learned the
pattern of common SQL Injection attacks, and can now identify and
stop Autolycus, when attempting such attacks.

(Note: many of the examples shown in this paper refer to MS SQL Server,
while some others refer to MySQL or Oracle. The reader must not conclude
that one database or another is more or less vulnerable to evasion
techniques, based on the number of examples shown here. There are many
more specific examples, in any database, whether listed here or not, to be
found. The basics concepts of these techniques, however, remain the same).

3 This paper assumes that the protected Web server hides its error messages. It is
recommended that the reader should be familiar with the techniques that allow performing SQL
Injection without detailed error messages, as they appear in the paper 'Blindfolded SQL
Injection', published in September 2003 by Imperva's Application Defense Center.

5

Recognizing Signature Protection

Autolycus, unaware of the new guard, sticks to his old habits, and is
quickly stopped and thrown out of the fortress. Luckily, Autolycus has
nothing stopping him from coming back a minute after being thrown
out, and he repeats his attempts. Having enough experience in this
technique, Autolycus quickly understands that something new is
holding him back, and he moves on to identifying what is it that
blocks his way to the treasury. It will not be long before Autolycus
recognizes his foe from the old times, Signaturious.

In modern days, Autolycus is a savvy hacker. He makes a point of
reading all relevant mailing lists, being up to date with new security
features and security products, and understanding how they work.
After noticing that all of his attempts are blocked, unrelated to their
actual content, Autolycus is likely to understand, very quickly, that
signature protection is set on the Web server, and that his requests
are failing not because his SQL Injection is wrong, but because the
Web server or the security gateway in front of it have noticed some
SQL keywords.

Guessing, however, is never sufficient, and Autolycus decides to run
a series of tests to verify that this is indeed the case. Luckily, for this
test, Autolycus doesn’t really need to be able to do any kind of SQL
Injection. The mechanisms which recognize these signatures can not
tell whether a parameter is subsequently transferred to an SQL query
or not. The identification of the signature-trigging strings can
therefore be easily done on any page with no relation to its actual
functionality in the system.

Autolycus, therefore, needs for his first step to simply identify a
location in the application where an arbitrary string, that is unlikely to
trigger a signature, can be inserted without invoking any server side
error. Using such a plain string allows eliminating the cases where
other security mechanisms are stopping Autolycus. (For instance,
inserting a string instead of an integer inside a numerical parameter
may trigger a type mismatch error in the server. When detailed errors
are hidden, this error can not be differentiated from the error
generated by the signature mechanism.).

The insertion of such an arbitrary string into the HTTP request can be
done in a variety of ways:

- Any free input field in any of the pages in the application
(remember – the signature detection operates on all the pages in
the site), including search fields, form submissions, etc.

6

- If no free input fields are presented, any of the parameters that
are in string format can be examined to check if free string
insertion is available.

- Alternatively, if no string fields exist at all in the system, a new
parameter can be simply added to the request, and is likely to be
ignored by the application itself. (Notice that some of the
application security products would block such an attempt.) For
example:

…&id=43&testparam=ARBITRARY

- In other cases, where SQL Injection has already been detected,
and assuming no signature exists for the SQL comment
characters (-- or /* */), a working simple injection can be built and
the suspicious pattern placed inside a comment. For example:

…&dbid=originalid' -- ARBITRARY

- Another technique, assuming SQL Injection has already been
detected, and no signature exists on the word AND, is to place
the suspicious pattern inside a string literal:

…&dbid=originalid' AND 'ARBITRARY'='ARBITRARY'

Eventually, in almost every application, a location can be found
where an arbitrary string can be inserted without causing any other
error. Once it is located, the second stage of the testing can take
place.

In the second stage, Autolycus tries to verify whether indeed
signature blocking takes place. This is simply done by replacing the
arbitrary string with a string that is likely to trigger the signature
mechanism, such as:
- UNION SELECT
- OR 1=1
- EXEC SP_ (or EXEC XP_)

Assuming the site is indeed protected, any, or at least most of these
requests will yield an error, generated by the signature mechanism.
Autolycus now knows that signature protection is in place, and can
move to the final step, namely enumeration (at least partial) of the
signature list.

Sadly, this part is not very glamorous. It involves a tedious,
methodical process, of trial and error. Autolycus simply takes a list of
the attacks he uses during the hack, and tries them out one by one.
Those that do not cause an error are listed as safe. Those that are
blocked by the server are broken down into components, until the
exact string or regular expression is identified. This may sound like a
sisyphic project, but it normally does not take too long to identify
those signatures that actually disturb the attack.

7

Common Evasion Techniques

After recognizing his archenemy Signaturious, Autolycus sits on the
ground, next to the fortress, and plans his next move. He now knows
which of his actions are monitored by Signatorious, yet this just builds
up frustration. All of his normal moves are detected by this new
guard. He goes back home, and digs up from his library a book titled
'The Oldest Tricks in the World'. "I was able to fool Signatorious in
the old times", he thinks to himself, "Maybe there are some old tricks
he still hasn’t learned…"

Surprisingly enough, many of the new generation products fail where
older generation products also failed in the past. It is therefore likely
that the first move of Autolycus would be to try some of these old
tricks, before proceeding to the advanced techniques. Some such
common old tricks are presented below.

Different Encodings
Various encoding tricks have proved themselves useful throughout
the history of computer attacks. The reasons for this are many. Some
products simply fail to do the right implementation or sufficiently
understand the application level protocol. Others are aware of the
problem, yet the performance requirements limit what they can do in
real time. One way or another, using a variety of encoding
techniques, such as URL Encoding, UTF-8, etc. may prove useful.

White Spaces Diversity
Many of the signatures that are used to prevent SQL Injection attacks
are a sequence of two or more expressions, separated by a white
space. The reason for this is simple, a single word, such as SELECT,
may generate a lot of false positives. The expression UNION
SELECT, however, is quite unique to the SQL world, making it a
good signature. This, however, carries the potential for the white
spaces problem. If the signature is not accurately built, all Autolycus
needs to do is replace a single space with two spaces, or a space
with a tab, rendering the signature useless, and allowing the attack to
take place.

IP Fragmentation and TCP Segmentation
Although less likely, some of the signature detection mechanisms,
(usually those that focus on the network rather than those that
actually parse the application protocol), may still be vulnerable to
fragmentation of lower level network protocols.

8

Advanced Evasion Techniques

Autolycus is now tired. He tried every trick in his book, yet was
thrown out of the fortress over and over again. A little voice in his
head whispers "Let it go, there are so many other fortresses around".
Autolycus gives in to the voice, and returns home. At night, however,
he is restless. It can't be that he will give up on this. Signatorious is
not that smart. He only knows what he was shown. "There must be a
way to fool this guard" he thinks as he falls asleep.

In the morning, after dreams of the treasures found inside the
fortress, he decides to try another move. He realizes that using old
books from his library is not the solution, and he decides to sit down,
and think of creative ideas of his own, and then to try again. "If I will
come up with a good idea of my own, the guard will never catch me",
he thinks to himself, and rightfully so.

We assume now that Autolycus has reached the point where
common evasion techniques were not successful, and he moves on
to the next step. We review here several techniques researched in
Imperva's Application Defense Center that have proven successful in
avoiding many common signature based protection mechanisms.

The 'OR 1=1' Signature
One of the common signatures used by such mechanisms is some
sort of variant on the famous OR 1=1 attack. Signatures are usually
built as a regular expression, aimed at catching as many possible
variations of the attack. Sadly (or luckily, for Autolycus), many of
them can be tricked by using sophisticated matches. For example, an
unusual string can be used, such as:

OR 'Unusual' = 'Unusual'

Yet, with some better systems, this might not be enough. Autolycus
therefore must find a way to make the two expressions look different,
yet still be the same. A very simple trick is to add the character N
prior to the second string, like this:

OR 'Simple' = N'Simple'

This character tells the SQL Server that the string should be treated
as nvarchar. This doesn’t change anything in the comparison for the
SQL itself, but definitely makes it different for any signature driven
mechanism.

An even better technique would be to break one of the strings into
two, concatenating it on the SQL level. This will render useless any
mechanism which compares the strings on both sides of the = sign

9

(the example is in MS SQL Server syntax, but can be done in a
similar manner in any other database).
 OR 'Simple' = 'Sim'+'ple'

One of the above mentioned techniques is likely to evade most of the
signature based mechanisms. Yet, some vendors might choose a
much wider regular expression to cope with this attack. Something
along the lines of the word OR followed by an equal sign (=)
anywhere in the string.

This, however, can also be easily avoided by simply finding an
expression which evaluates as true, without having the equal sign in
it. For instance, replacing the equal sign with the SQL word LIKE
(which performs a partial compare):
 OR 'Simple' LIKE 'Sim%'

Or to use one of the < or > operators, like one of these examples:
 OR 'Simple' > 'S'
 OR 'Simple' < 'X'
 OR 2 > 1

Or to use the IN or BETWEEN statements:
 OR 'Simple' IN ('Simple')

 OR 'Simple' BETWEEN 'R' AND 'T'

(The latter is valid in MS SQL Server only, but can be easily modified
to work on any Database).

And this can go on forever. SQL is a very rich language, and for
every signature invented, a new evasion technique can be
developed. Trying to add signatures to cover all of the above
presented techniques is bound to fail, and will most likely badly
damage the performance. Another possibility is, of course, to define
signatures that are very general, such as an 'OR' followed, anywhere
in the string, by an SQL keyword or Meta character. This, however, is
likely to result with many false positives. Think of the following URL:
 http://site/order.asp?ProdID=5&Quantity=4

Although far from being an invalid URL, it will trigger such a
signature:
 http://site/order.asp?ProdID=5&Quantity=4

Clearly, this is not the solution.

10

Evading Signatures with White Spaces
As already mentioned before, common signatures nowadays include
white spaces within them. Patterns like 'UNION SELECT' or 'EXEC
SP_' (under MSSQL Server), provide relatively high accuracy for
signatures. Other signatures, aimed at neutralizing the above
described false positives may include signatures such as 'OR ' (an
OR followed by a white space) or similar signatures.

In a previous section, a simple, common technique of replacing the
number or type of white spaces was discussed. Many of the modern
protection mechanisms, however, evolved past this stage, and can
properly handle any combination of white spaces. As a result, a
better technique is developed so that Autolycus can penetrate the
site.

The technique takes advantage of vendor specific SQL parsing
decisions, and creates a valid SQL statement without using spaces
or by inserting arbitrary characters between them. The techniques
here differ from one database to another, yet share the same
principles.

The basic technique, which operates on databases that perform a
rather loose (and more user-friendly) parsing of the SQL syntax, is to
simply drop the spaces. With Microsoft SQL Server, for instance,
spaces between SQL keywords and number or string literals can be
completely omitted, allowing an easy evasion of signatures such as
'OR '. Instead of typing:
 …OrigText' OR 'Simple' = 'Simple'

(which is the basic attack), Autolycus can simply type:
 …OrigText'OR'Simple'='Simple'

This works exactly the same way, but has no spaces in it
whatsoever, completely evading any spaces based signature.

This, however, will not work for injections such as 'UNION SELECT',
since there must be a separation between the two keywords. The
solution is, therefore, to find a way to separate them with something
other than a white space. A good example of this technique is
presented by the C-like comment syntax available in most database
servers (this was tested on MS SQL, MySQL and Oracle).

Most readers are probably familiar with the double hyphen (--)
comment syntax, that comments out everything up to a new line.
However, another syntax for comments is supported by most
database servers. This is the C-like syntax, using /* to start a
comment and */ to end it. This means that a valid SQL statement can
look like this:

11

 SELECT *
FROM tblProducts /* List of Prods */
WHERE ProdID = 5

Similarly, this can be taken into the injection code, generating an
injection string as follows:
 …&ProdID=2 UNION /**/ SELECT name …

Any signature attempting to detect a UNION followed by any amount
of white spaces, followed by a SELECT, will fail to detect this
signature. Moreover, in most cases the /**/ can actually replace any
of the spaces (in the above example it was in addition of the spaces),
allowing evasion of more sensitive signatures such as 'SELECT ' or
'INSERT ' (an SQL keyword followed by a single space), which have
been noted to be used by some SQL signature protection
mechanisms. The previous example then would appear like this:
 …&ProdID=2/**/UNION/**/SELECT/**/name …

(The above example works in MS SQL and in Oracle, but not in
MySQL. In MySQL, at least one space has to be present. It can be
present, however, after the comment, which still allows evading the
signature that holds the space right after the keyword).

This technique can also be used in SQL Injections to Oracle, to
replace the OR 1=1 example showed above for MS SQL. Although
Oracle will not allow omitting the white spaces, it does allow replacing
them with a comment, which can lead to the following exploit:
 …OrigText'/**/OR/**/'Simple'='Simple'

This technique can be even further exploited, providing even better
evasion (especially in the cases of advanced application firewalls that
check the signatures on the parameter value only) in cases where
two separate parameters are inserted into the SQL statement.
Imagine a login page, where the following requests:
 http://site/login.asp?User=X&Pass=Y

Generates the following query:
 SELECT * FROM Users

WHERE User='X' AND Pass='Y'

In this case, the beginning of the comment can be injected into one
parameter, whereas the termination of the comment can be injected
into the other.
 …login.asp?User=X'OR'1'/*&Pass=Y*/='1

Resulting in the following query, which easily logs Autolycus in:
 SELECT * FROM Users

WHERE User='X'OR'1'/* AND Pass='*/='1'

12

As with the techniques described for the 'OR 1=1' signature evasion,
there is no real solution here. It is of course possible to add /* and */
to the signature list. However, a new trick is likely to be devised
shortly after. Alternatively, the actual keywords, such as SELECT and
INSERT can be placed as a signature, but as with the OR keyword,
this will result in many false positives in real world applications,
providing no real solution. (Imagine a 'Contact Us' form in an
ecommerce site, where the customer has typed '…I have selected
the product, but then had a problem…'. This would trigger a signature
on the word SELECT, without any attack taking place.)

Evading Any String Pattern
Despite the example showing why standalone keywords are likely to
generate false positives, some stricter sites may choose to apply
such signatures, while limiting the functionality so that no free text will
be entered by the users (for instance, the main portion of a banking
application does not have to allow free texts from the user). In this
case, Autolycus will need other techniques, which allow breaking
strings in the middle.

Luckily, Autolycus still does not need to do a lot of research, as the
previously mentioned techniques can, with some modification, be
used for the purpose of this as well. The first technique goes back to
the C-like comments. With MySQL, the C-like comments would not
work as a replacement for a space. However, what was disturbing
back there is now an advantage. The same comments can be used
in MySQL to break words in the middle, for instance:
 …UN/**/ION/**/ SE/**/LECT/**/ …

Another very promising prospect lies back in the string concatenation
demonstrated earlier. Most databases allow the user to execute an
SQL query through one or more statements (built in operations,
stored procedures, etc.), that receive the SQL query as a string.

All Autolycus therefore needs to do, is find a way to build an exploit to
the SQL Injection that will allow the execution of such a string. Once
this exploit was created (either with no evasion techniques at all,
because no one thought of this attack, or using previously mentioned
techniques), all the other patterns can be evaded simply by using
string concatenation in the middle of the suspicious string.

A simple example is demonstrated with MS SQL's built in EXEC
command. This command can also be used as a function, receiving
any SQL statement as a string, which can be naturally concatenated:

…; EXEC('INS'+'ERT INTO…')

Since the word INSERT was split into two parts, no signature
mechanism is able to detect it. The SQL, however, rebuilds the
string, allowing it to execute as planned.

13

As with our other examples, this is not a singular example. A similar
attack, on MS SQL can be done with a stored procedure named
SP_EXECUTESQL. This is a new version of the outdated (yet still
functioning) SP_SQLEXEC procedure. Both of them will receive a
string containing an SQL query and will execute it. Naturally, this
problem is not limited to MS SQL. Other databases suffer from the
same problem. With Oracle, the syntax 'EXECUTE IMMEDIATE' can
be used to execute a string which can, of course, be concatenated.

Another interesting twist on this attack, in MS SQL, can be based on
a hexadecimal encoding of the string to be executed4. This way, the
string 'SELECT' can be represented by the hexadecimal number
0x73656c656374, which will not be detected by any signature
protection mechanism. This, combined with the loose-syntax nature
of SQL, allows executing many signature defined statements.

Another good example, in MS SQL relates to the OPENROWSET
statement. This technique was published in a white paper5 over a
year and a half ago, yet despite it being an old, known technique,
most signature based products fail to look for it (for instance, the
recently published article in SecurityFocus™, mentioned before,
completely ignores this keyword). Again, since OPENROWSET
receives a string parameter, it is possible to concatenate into it the
required query without it being detected by the signature mechanism.

One may argue that the number of statements that can be used for
such a technique is limited within each Database. Yet although this
might be true to some extent, it is likely that while building signatures
some of them will be forgotten.

An excellent example for that is provided by MS SQL, which contains
unlisted stored procedures that can be used for execution of SQL
queries. Microsoft's implementation of prepared statements in MS
SQL Server is actually done using several internal, unlisted, stored
procedures. When running a prepared statement, a stored procedure
named sp_prepare runs first, preparing the statement, and then a
stored procedure named sp_execute is run in order to execute the
query. With these procedures not appearing in any listing of SQL
Server, they are obviously likely to be missing from any SQL Injection
signature database.

Obviously, similar undocumented procedures and functions may exist
in other databases, exposing them to future attacks evading existing
signatures.

4 This technique was described in a paper named '(more) Advanced SQL Injection' by Chris
Anley which was published in 2002.
5 The paper, 'Manipulating Microsoft SQL Server Using SQL Injection', written by Cesar
Cerrudo, covers advanced techniques for exploitation of MS SQL Server, including the
technique using OPENROWSET.

14

Conclusion

The next morning, Autolycus is home again. Next to him, lies the
stolen treasure. "I did it again," he thinks to himself, as the sunlight
reflects off the gold bars. With a satisfied smile he sits down to write
his new book 'New Guards – New Tricks'. Sadly, he will choose to
distribute that book only to his friends inside the thieves' guild,
preventing the guards of the other fortresses to learn anything new
from it.

Three days later, an angry man approaches the gates of the fortress.
He claims he saw his mother's necklace, stored for safekeeping in
the fortress treasury, on sale in the market. All the fortress' guards
run down to the treasury, and find that indeed it was plundered.
Signatorious then understands that he was outsmarted by Autolycus.
Frustrated by his defeat, and in a desperate attempt to prove his
worth, he starts to frantically stop anyone he imagines as suspicious,
throwing out many innocent passersby out of the fortress. The chief
of guards then understands that Signatorious is simply unable to fulfill
his task, and relieves him from duty.

At this point, we believe the conclusion of this paper is clear to the
reader. Signature protection against SQL Injection is simply not
enough. Although this paper demonstrates only some of the variety
of evasion techniques for avoiding SQL Injection signatures, some or
even all of these techniques are likely to operate on most of today's
signature protection mechanisms.

Sadly, the trivial solution of adding a few more signatures to your
protection mechanism is not a real solution. It can help thwart some
of the technique shown here, but other techniques can be developed.
This is due to the richness of the SQL language implemented by
many database vendors. The richness of the language means that
many different statements can be sent to the server, all resulting in
one specific operation.

Trying to provide full security for such a rich language must take one
of two approaches. The first approach is an attempt to perform an
accurate detection of all possible dangerous SQL statements. For a
single Database type, this should include all sufficiently accurate
combinations of SQL keywords (such as INSERT… INTO, UNION
SELECT), all stored procedures and functions (these usually have
distinctive names, allowing them to appear as they are in a
signature), and any other relevant SQL related syntax.

That approach, however, has many disadvantages. Even if
theoretically, covering all possible attacks and evasion techniques
was possible, this would require building hundreds of signatures,

15

many of them fairly complex, regular expression based. Although
providing reasonable good accuracy, this is simply not practical,
performance wise.

Having several hundreds of signatures for every database type easily
rises to over a thousand signatures in a diverse organization holding
several different database types. These are on top of the already
existing signatures for other attacks. The performance price
(throughput and latency) is simply unacceptable for such a large
number of signatures.

The second approach is to generate very few, very generic
signatures. With MSSQL Server such a policy can include the
following keywords (with their matching different encodings of
course):

SELECT, INSERT, CREATE, DELETE, FROM, WHERE, OR,
AND, LIKE, EXEC, SP_, XP_, SQL, ROWSET, OPEN,
BEGIN, END, DECLARE

And also some Meta Characters (and their encodings), such as:
 ; -- + ' () = > < @

This, however, can only work on a specifically built application
running in a lab. In the real world, this minimized set of signatures is
bound to block more users than hackers.

A fine example of this is provided by the previously mentioned
'Detection of SQL Injection and Cross-site Scripting Attacks' article.
This article tried a reduced set of the second approach, using regular
expressions seeking specific Meta characters, as well as regular
expressions that allow the detection of specific key words, such as
OR. Sadly, this is bound to result with many false positives. This
amount of false positives may be acceptable in some IDS systems,
but is definitely not acceptable in an IPS or a Web Application
Firewall, which blocks any such request. Not many organizations will
agree to block any user who studies in St. John's University, and
wishes to fill in his personal details.

We are now at the point where the original claim has been proven.
Using SQL Injection signatures is simply not a good enough
mechanism to protect against SQL Injection attacks. Any attempt to
create a signature base good enough to prevent all SQL Injection
attacks is bound to fail for one of two reasons – too many false
positives, or too many signatures, more than the mechanism can
handle.

Although using SQL Injection signatures does, of course, provide a
certain level of security (which pushes off many less capable
hackers) it provides a false sense of security, as the more capable
hacker would be able to penetrate through it.

16

References

1. Basic SQL Injection Overview
Taken from Imperva's on-line glossary
http://www.imperva.com/application_defense_center/glossary/sql_inj
ection.html

2. Detection of SQL Injection and Cross-site Scripting Attacks
By K. K. Mookhey and Nilesh Burghate, March 2004
http://www.securityfocus.com/infocus/1768

3. Blindfolded SQL Injection
By Ofer Maor and Amichai Shulman, September 2003
http://www.imperva.com/application_defense_center/white_papers/bli
nd_sql_server_injection.html

4. (more) Advanced SQL Injection
By Chris Anley, June 2002
http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf

5. Manipulating Microsoft SQL Server Using SQL Injection
By Cesar Cerrudo, August 2002
http://www.appsecinc.com/presentations/Manipulating_SQL_Server_
Using_SQL_Injection.pdf

Imperva, Inc.
12 Hachilazon st. Ramat-Gan 52522, Israel
Tel: +972 3 6120133 | Fax: +972 3 7511133
U.S. Toll Free: 1-866-592-1289

950 Tower Lane, Suite 1710
Foster City, CA 94404, USA
Tel: (650) 345-9000 | Fax: (650) 345-9004 TM

