
Blindfolded SQL Injection

W
hi

te
 P

ap
er

In the past few years, SQL Injection attacks have been on the
rise. The increase in the number of Database based applications,
combined with various publications that explain the problem and
how it can be exploited (in both electronic and printed formats),
have led to many attacks and abuse of this type of attack.

In response to the increased number of attacks taking advantage
of SQL Injection, many attempts have been made to find
solutions to the problem. The obvious solution is, and always will
be, to build the programs in a secure manner. Many documents
have been published regarding secure development of Web
applications with emphasis on Database access, yet not much
has changed. Web developers are still, usually, not security aware,
and the problems continue to appear.

As a result, security experts keep looking for other measures that
can be taken against this problem. Unfortunately, the common
solution to this problem took form in suppressing the detailed
error messages. Since most documents describing SQL Injection
rely on gathering information through the error messages (some
even claim that specific tasks cannot be completed without
detailed error messages), security experts developed a notion
that SQL Injection cannot really be exploited without detailed
error messages (or the source code itself).

Hiding the error messages, however, is just another
implementation of the “Security by Obscurity” approach,
which has been repeatedly proven through history as a flawed
approach. The purpose of this document is to refute the notion
that SQL Injection can only be exploited with detailed error
messages, and to present simple techniques used by attackers
when no detailed error messages are present. These techniques
all come under the name ’Blindfolded SQL Injection’. The name
reflects the feeling that one may get when trying to do SQL
Injection without detailed error messages. It also reflects that
with the right skill, even SQL Injection becomes so simple that it
can be done blindfolded.

2< >Imperva White Paper

Blindfolded SQL Injection

Table of Contents
Overview.. 3

Identifying Injections.. 3

Recognizing Errors.. 3

Locating Errors.. 4

Identifying SQL Injection Vulnerable Parameters.. 4

Performing the Injection.. 5

Getting the Syntax Right... 5

Identifying the Database.. 6

Exploiting the Injection... 6

UNION SELECT Injections... 7

Counting the Columns... 7

Identifying Columns Types... 8

Summary..10

3< >Imperva White Paper

Blindfolded SQL Injection

Overview
To understand how this is achieved, we first show how SQL Injection can be easily identified, based on minimal
reaction of the server. Then, we go over ways to craft a valid syntax request, which can be replaced later on with
any valid SQL request. Eventually, we discuss how UNION SELECT statements (often considered the highlight of
SQL Injection attacks) can be exploited with no detailed error messages. Being blindfolded, the techniques in
this document assume that we have zero knowledge of the application, type of database, structure of the tables,
etc, and that these need to be detected throughout the injection process.

In this manner, we hope to make it clear that application level vulnerabilities must be handled by application
level solutions, and that relying on suppressed error messages for protection from SQL Injection is eventually
useless.

Two additional important notes: First, this document is not an SQL Injection guide, nor a SQL Tutorial. This
document does not go into the details of specific SQL Injection attacks and exploitation and assumes that the
reader has basic understanding of what SQL Injection attacks are, and wants to understand how these can be
hazardous against an application that does not provide detailed error messages. The second note regards the
examples provided throughout this white paper. Although the provided examples refer to MS SQL Server and
Oracle only, the same techniques can be applied to other Databases as well.

Identifying Injections
To make an SQL Injection work, the first step, obviously, is to identify the injection. To do that, the attacker must
first establish some sort of indication regarding errors in the system. Although the error messages themselves
are not being displayed, the application should still have some capability of separating right (a valid request)
from wrong (an invalid request), and the attacker easily learns to identify these indications, find the errors and
identify whether they are SQL related or not.

Recognizing Errors
First, we must understand the types of errors that an attacker can face. A Web application can generate errors
of two major types. The first type of error is that generated by the Web server as the result of some exception in
the code. If untouched, these exceptions yield the all too familiar ‘500: Internal Server Error’. Normally, injection
of bad SQL syntax (unclosed quotes, for instance), should cause the application to return this type of error,
although other errors may lead to such an exception. A simple error suppression process will replace the default
texts of this error with a custom-made HTML page, but observing the response line itself will reveal the fact that
it is still a server error. In other cases, more effort is taken to suppress the errors, and the erroneous response
may simply be a redirect to the main/previous page, or to generic error message which does not provide any
information.

The second type of error is generated by the application code, and usually indicates better programming. The
application expects certain invalid cases, and can generate a specific customized error for them. Although
normally these types of errors should come as part of a valid (200 OK) response, they may also be replaced with
redirects or other means of concealing, much like the ‘Internal Server Error’.

A simple example will differentiate between the two: Let’s take two similar eCommerce applications named A
and B. Both applications are using a page called proddetails.asp. This page expects to receive a parameter called
ProdID. It takes the received ProdID, retrieves the product details from the Database, and then performs some
manipulations over the returned record. Both applications only call proddetails.asp through a link, therefore
ProdID should always be valid. Application A is satisfied with this and does no additional checks. When an
attacker tampers with ProdID, inserting an id that has no row in the table, an empty recordset will be returned.
Since application A does not expect an empty recordset, when it tries to manipulate the data in the record,
an exception is likely to occur, generating a ‘500: Internal Server Error’. Application B, however, verifies that
the recordset size is larger than 0 before any manipulation of it. If it is not, an error appears claiming ‘No such
product’, or, if the programmer wants to hide the error, the user is simply presented back with the product list.

An attacker attempting to perform Blindfolded SQL Injection would therefore try, at first, to generate a few
invalid requests, and learn how the application handles errors, and what could be expected of it when an SQL
error occurs.

4< >Imperva White Paper

Blindfolded SQL Injection

Locating Errors
With that knowledge of the application at hand, the attacker can now proceed to the second part of the attack,
which is locating errors that are a result of manipulated input. For that step, normal SQL Injection testing
techniques are applied, such as adding SQL keywords (OR, AND, etc.), and META characters (such as ; or ‘). Each
parameter is individually tested and the response is closely examined to determine whether an error occurred.
Using an intercepting proxy or any other tool of choice, it is easy to identify redirects and other supposedly
hidden errors. Each parameter that returns an error is suspicious, as it may be vulnerable to SQL Injection.

As always, all parameters are tested individually, with the rest of the request being valid. This is extremely
important in this case, as this process must neutralize any possible cause of error other than the injection itself.
The result of this process is usually a long list of suspicious parameters. Some of these parameters may indeed
be vulnerable to SQL Injection and may be exploited. The others had errors that are unrelated to SQL, and can be
discarded. The next step for the attacker is therefore identifying the pick of the litter, which, in our case are those
parameters that are indeed vulnerable to SQL Injection.

Identifying SQL Injection Vulnerable Parameters
To better understand how this is done, it is important to understand the basic types of data in SQL. SQL fields
can normally be classified as one of three main types: Number, String or Date. Each main type has many different
flavors, but these are irrelevant for the injection process. Each parameter transferred from the web application to
the SQL query is considered to be one of these types, and it is usually very simple to determine the type (‘abc’ is
obviously a string, whereas 4 is likely to be an number, although it must be considered as a string as well).

In the SQL language, numeric parameters are passed to the server as is, whereas strings or dates are passed with
quotes around them. For example:

SELECT * FROM Products WHERE ProdID = 4

vs.

SELECT * FROM Products WHERE ProdName = ‘Book’

The SQL server, however, does not care what type of an expression it receives, as long as it is indeed of the
relevant type. This behavior gives the attacker the best way of identifying whether an error is indeed an SQL
one or unrelated. With numeric values, the easiest way to handle this is by using basic arithmetic operations. For
instance, let’s look at the following request:

/myecommercesite/proddetails.asp?ProdID=4

Testing this for SQL Injection is very simple. One attempt is done by injecting 4’ as the parameter. The other is
done using 3 + 1 as the parameter. Assuming this parameter is indeed passed to a SQL request, the result of the
two tests will be the following two SQL queries:

(1) SELECT * FROM Products WHERE ProdID = 4’

(2) SELECT * FROM Products WHERE ProdID = 3 + 1

The first one will definitely generate an error, as this is bad SQL syntax. The second, however, will execute
smoothly, returning the same product as the original request (with 4 as the ProdID), thus indicating that this
parameter is indeed vulnerable to SQL Injection. A similar technique can be used for replacing the parameter
with an SQL syntax string expression. There are only two differences. First, string parameters are held inside
quotes, so breaking out of the quotes is necessary. Secondly, different SQL servers use different syntax for string
concatenation. For instance, Microsoft SQL Server uses the + sign to concatenate string, whereas Oracle uses ||
for the same task. Other than that, the same technique is used. For instance:

/myecommercesite/proddetails.asp?ProdName=Book

Testing this for SQL Injection involves replacing the ProdName parameter, once with an invalid string such as
B’, the other with one that will generate a valid string expression, such as B’ + ‘ook (or B’ || ‘ook with Oracle). This
results with the following queries:

5< >Imperva White Paper

Blindfolded SQL Injection

(1) SELECT * FROM Products WHERE ProdName = ‘Book’’

(2) SELECT * FROM Products WHERE ProdID = ‘B’ + ‘ook’

Again, the first query is likely to generate an SQL error, while the second is expected to return the same product
as the original request, with Book as its value.

Similarly, any other expression can be used to replace the original parameters. Specific system functions can
be used to return either a number, a string or a date (for instance, in Oracle, sysdate returns a date expression,
whereas in SQL Server getdate() does the same task). Other techniques can also be used to determine whether
SQL Injection occurs.

As can be seen, identifying whether SQL Injection occurs is a very simple task even without detailed error
messages, allowing the attacker to easily continue with the attack.

Performing the Injection
Once the injection has been identified by the attacker, the next step will be trying to exploit it. For that step,
the attacker must be able to generate valid syntax, identify the specific Database Server, and build the
required exploit.

Getting the Syntax Right
This is usually the trickiest part in the Blindfolded SQL Injection process. If the original queries are simple, this is
simple as well. However, if the original query was complex, breaking out of it may require a lot of trial and error.
In any case, only a few basic techniques are required to perform these tests.

The basic syntax identification process goes for standard SELECT … WHERE statements, with the injected
parameter being part of the WHERE clause. In order to get a valid syntax, the attacker must be able to append
data to the original WHERE statement so that it will return different data than it should. In simple applications,
simply adding OR 1=1 can often do the trick. In many cases, however, this will not be sufficient for a successful
exploit. Often, parenthesis must be closed so they match the originally opened ones. Another problem that may
occur is that a tampered query will cause the application to generate an error, which cannot be distinguished
from an SQL error (for instance, if only one record is expected and OR 1=1 caused the Database to return 1000
records, the application may generate an error).

Since each WHERE clause is basically a set of expressions evaluating as True or False joined together with OR,
AND and parenthesis, learning the right syntax that breaks out of parenthesis and properly terminates the query
is done by attempting different combinations. For instance, adding ‘AND 1=2’ turns the entire phrase to a false
one, whereas adding ‘OR 1=2’ has zero influence, except for operator precedence.

With some injections, simply altering the WHERE clause may suffice. With others, such as UNION SELECT
Injection, or stored procedures injections, it is not enough to change the WHERE clause. The entire SQL
statement must be properly terminated so that additional syntax can be appended. For that, a very simple
technique can be used. After the attacker establishes a valid combination of AND, OR, 1=2, and 1=1 expressions,
the SQL comment sign can be used.

This sign, represented by two consecutive dashes (--), instructs the SQL server to ignore the rest of input in the
line. For instance, let us look at a simple login page, taking both the Username and Password into the query, such
as this one:

SELECT Username, UserID, Password FROM Users

WHERE Username = ‘user’ AND Password = ‘pass’

By sending johndoe’ -- as the user, the following WHERE clause is generated:

WHERE Username = ‘johndoe’ --’AND Password = ‘pass’

6< >Imperva White Paper

Blindfolded SQL Injection

In this case, not only was the syntax right, but the authentication was bypassed. However, let us look at a slightly
different WHERE statement:

WHERE (Username = ‘user’ AND Password = ‘pass’)

Notice the parenthesis around the statement. With the same injection (jonhdoe’ --), the query will now fail:

WHERE (Username = ‘johndoe’ --’ AND Password = ‘pass’)

The query has unmatched parenthesis, and can therefore not be executed.

This example, therefore, demonstrates how the comment sign can be used to identify whether the query has
been properly terminated. If the comment sign was added and no error occurred, it means that it terminated
properly right before the comment. Otherwise, additional trial and error is required.

Identifying the Database
The next step the attacker needs to take, just before starting to exploit the SQL Injection, is to identify the
specific database used. Luckily (for the attacker, at least), this is a much easier task than finding the valid syntax.

Several simple tricks allow the attacker to identify the Database type, all based on differences which exist
between specific implementations of Database engines. The following examples focus on differentiating
between Oracle and Microsoft SQL Server. Similar techniques, however, are easy to use to identify other
Database engines.

A very simple trick, which was mentioned earlier, is the string concatenation difference. Assuming the syntax is
known, and the attacker is able to add additional expressions to the WHERE clause, a simple string comparison
can be done using this concatenation. One such example would be:

AND ‘xxx’ = ‘x’ + ‘xx’

By replacing the + with ||, Oracle can be easily differentiated from MS SQL Server or other Databases.

Another technique uses the semicolon character. In SQL, a semicolon is used to chain several SQL statements
in the same line. While with SQL Injection this can be used inside the injection code, the Oracle drivers do not
allow use of semicolons in this manner. Assuming the comment is properly working (meaning, it generates no
error), adding a semicolon before it has no influence on an MS SQL Server, yet generates an error with Oracle.
Additionally, verifying whether additional commands can be executed after the semicolon can be done by
adding the COMMIT statement (for instance, injecting xxx’ ; COMMIT --). Assuming statements can be injected
there, this should not generate an error.

Some expressions can eventually be replaced with system functions which return the right value. Since each
database uses slightly different functions, it is easy to identify the database type this way (much like the above-
mentioned date functions, getdate() with MS SQL Server vs. sysdate with Oracle).

Exploiting the Injection
With all the relevant information at hand, the attacker can now proceed to perform the injection itself. While
building the exploit code, the attacker no longer needs information from the error messages and can build the
exploits based on all the known SQL Injection techniques.

This paper does not discuss normal SQL Injection exploitation techniques, as they have already been discussed
in detail in other papers. The only exploitation technique further discussed in this document is injection of
UNION SELECT statements, which is described in the next section.

7< >Imperva White Paper

Blindfolded SQL Injection

UNION SELECT Injections
Although tampering with SELECT … WHERE statements can be very rewarding in many applications, attackers
often want to be able to perform a UNION SELECT injection. Unlike WHERE clauses manipulation, successfully
performing a UNION SELECT injection gives the attacker access to all tables in the system which may not be
otherwise accessible.

Since performing a UNION SELECT statement requires knowledge of the number of fields in the query as well as
the type of each field, it is often thought that it cannot be performed without detailed error messages, especially
when the number of fields in the original query is large. The following section is going to refute this notion by
showing a set of very simple techniques that easily solve this problem.

Before proceeding, it is obvious that the attacker must have the correct syntax. The previous sections, however,
have already established that this is possible and demonstrated how this is done. The only important note
regarding the syntax is that with UNION SELECT, the syntax identification must be to the level that clears out all
parenthesis of the request and allows free injection of the UNION or other commands. (As explained before, this
can be verified by appending the comment sign to the injection).

Once the syntax is right, a UNION SELECT statement can be appended to the original query. The UNION SELECT
statement must have the same number of columns, (and the same types of columns as the original statement),
or an error is generated.

Counting the Columns
Counting the Columns can appear to be nearly impossible using the normal techniques of ‘UNION SELECT’ SQL
Injection. The way this is done, with detailed error messages, is by simply creating a UNION SELECT injection
and trying it with a different number of fields (one more in each attempt). When the error indicating a ‘column
number mismatch’ is replaced with a ‘column type mismatch’, the right number of columns has been reached and
the next step can be taken. When working blindfolded, however, we have absolutely no indication regarding the
type of the error; therefore this method is completely futile.

A different technique must be used to identify the number of the columns and this technique comes in the form
of the ORDER BY clause. Adding an ORDER BY clause to the end of the SELECT statement changes the order of
the results in the record-set. This is normally done by specifying the name of a sort column (or the names of
several sort columns).

Looking at an example of a financial query, a valid injection into the Credit Card number parameter would be
11223344) ORDER BY CCNum --, resulting in the following query:

SELECT CCNum FROM CreditCards

WHERE (AccNum=11223344) ORDER BY CCNum --

AND CardState=’Active’) AND UserName=’johndoe’

What is usually overlooked, however, is the fact that the ORDER BY clause can have a numeric form. In this case
the expression refers to a column number rather than its name. This means that injecting 11223344) ORDER
BY 1 -- will also be legitimate, and would do exactly the same, since CCNum is the first field in the result of
the query. Injecting 11223344) ORDER BY 2 --, however, will generate an error as this query has only one
field, meaning the result cannot be sorted by its second field.

Therefore, when coming to count the number of fields, ORDER BY can be very useful. First, the attacker adds an
ORDER BY 1 clause to the basic syntax he identified. Since every SELECT query must have at least one field,
this should work. If an error is received on that, the syntax should be furthered tampered with until it no longer
appears. (Although unlikely, it may also be that the sorting causes an error in the application. In this case, adding
ASC or DESC may solve the problem). Once a valid syntax containing the ORDER BY works with no errors, the
attacker changes the ordering from column 1 to column 100 (or 1000 or anything that is certain to be invalid). At
this point, an error should be generated, indicating that the enumeration is working.

8< >Imperva White Paper

Blindfolded SQL Injection

The attacker now has a method of identifying which column numbers exist and which do not, and can easily
identify the exact number of columns. The attacker simply needs to increase this number, one at a time, until an
error is received (since some columns may be of a type that does not allow sorting, it is always advisable to test
one or two additional numbers, and make sure that indeed errors are received). With this technique the number
of fields is easily enumerated, and no error messages are required.

Identifying Columns Types
With the valid syntax already known, the Database vendor determined, and the number of fields enumerated, all
that is left for the attacker is to identify the types of all the fields.

Getting the field types right can be tricky though as they must all match the original query. If it’s just a few fields,
this can easily be achieved by brute force, but if there are more, then a problem arises. As already mentioned,
there are 3 possible main types (number, string, date), so having 10 fields means there are 310 (nearly 60,000)
combinations. At 20 requests per second, this will take almost an hour. Having more fields than that makes the
entire process nearly impossible.

An easier technique must therefore be used when working in the dark. This comes in the form of the NULL
keyword in SQL. Unlike injection of static fields, which are of a specific type (such as a string or an integer), NULL
can match any type. It is therefore possible to inject a UNION SELECT statement where all fields are null and there
should be no type mismatch errors. Let us look at a query similar to the previous example:

SELECT CCNum,CCType,CCExp,CCName FROM CreditCards

WHERE (AccNum=11223344 AND CardState=’Active’)

AND UserName=’johndoe’

The only change is that the single CCNum field was replaced with several, so there are more fields. Assuming
the attacker successfully counted the number of columns of the result of this query (4 in our example), it is now
simple to inject a UNION statement with all NULLs, and having a FROM clause that does not generate permission
errors (again, trying to isolate each problem, so the specific permissions issues will be handled later on). With MS
SQL, the FROM clause can be simply omitted. This is valid syntax. With Oracle, using a table named dual can be
useful. Adding a WHERE statement that always evaluates as false (such as WHERE 1=2)

guarantees that no record-set containing only null values will be returned, eliminating further possible errors
(some applications may not properly handle NULL values).

Let’s now look at the MS SQL Server example, although the same applies to Oracle. Injecting 11223344)
UNION SELECT NULL,NULL,NULL,NULL WHERE 1=2 --, results in the following query:

SELECT CCNum,CCType,CCExp,CCName FROM CreditCards

WHERE (AccNum=11223344) UNION SELECT NULL,NULL,NULL,NULL

WHERE 1=2 --AND CardState=’Active’) AND UserName=’johndoe’

This type of NULL injection serves two purposes. The main purpose is to get a working UNION statement that has
no errors. Although this UNION still does not retrieve any real data, it provides an indication that the statement
indeed works. Another purpose of this empty UNION is to get a 100% identification of the Database used (using
a vendor-specific table name in the FROM clause).

Once the NULL-based UNION statement works, it is a trivial process to identify the types of each column. In each
iteration a single field is tested for its type. All three types (number, integer, string) are tested for the field, one of
them should work. This way, it takes up to three times the number of columns rather than three to the power of
column numbers. Assuming that CCNum is an integer, and that all other fields are strings, the following flow of
UNION will identify the valid types:

9< >Imperva White Paper

Blindfolded SQL Injection

•	 11223344) UNION SELECT NULL,NULL,NULL,NULL WHERE 1=2 –-

		 No Error - Syntax is right. MS SQL Server Used. Proceeding.

•	 11223344) UNION SELECT 1,NULL,NULL,NULL WHERE 1=2 –-

		 No Error – First column is an integer.

•	 11223344) UNION SELECT 1,2,NULL,NULL WHERE 1=2 –-

		 Error! – Second column is not an integer.

•	 11223344) UNION SELECT 1,’2’,NULL,NULL WHERE 1=2 –-

		 No Error – Second column is a string.

•	 11223344) UNION SELECT 1,’2’,3,NULL WHERE 1=2 –-

		 Error! – Third column is not an integer.

•	 11223344) UNION SELECT 1,’2’,’3’,NULL WHERE 1=2 –-

		 No Error – Third column is a string.

•	 11223344) UNION SELECT 1,’2’,’3’,4 WHERE 1=2 –-

		 Error! – Fourth column is not an integer.

•	 11223344) UNION SELECT 1,’2’,’3’,’4’ WHERE 1=2 –-

		 No Error – Fourth column is a string.

The attacker has now established a real, valid, UNION statement. Using the increasing numbers it is possible, of
course, to identify which field is presented where. All that is left now is to actually exploit this for the purposes
of the attack. For that, the injection can be used to retrieve data from the system tables (such as the list of tables
and their columns), followed by retrieving actual application data. This document does not, however, go into
these details, as they are thoroughly described in several existing SQL Injection white papers.

10< >Imperva White Paper

Blindfolded SQL Injection

Summary
This document summarizes research done at Imperva regarding the possibility of exploiting SQL Injection
while having no detailed error messages. This research was performed in order to prove to customers that
simply suppressing their error messages, going back to the “Security by Obscurity” approach, is just not enough.
Using the techniques described in this document, many applications were proven to be exploitable, despite all
attempts to disguise the information sent back to the client.

Hopefully, after reading this document, the reader now also understands why SQL Injection is a real threat to
any system, with or without detailed error messages, and why relying on suppressed error messages is not
secure enough.

Most of all, this document shows why an infrastructure level solution (such as suppressing error messages,
though any other infrastructure level solution would be similarly problematic) cannot provide a real solution to
application level risks. The only way to provide protection to the application itself is by taking application level
security measures.

For additional information regarding this whitepaper, please contact Imperva Research at
research@imperva.com.

Imperva
North America Headquarters			 International Headquarters
3400 Bridge Parkway				 125 Menachem Begin Street
Suite 101					 Tel-Aviv 67010
Redwood Shores, CA 94065			 Israel
Tel: +1-650-345-9000				 Tel: +972-3-6840100
Fax: +1-650-345-9004				 Fax: +972-3-6840200

Toll Free (U.S. only): +1-866-926-4678
www.imperva.com

© Copyright 2009, Imperva
All rights reserved. Imperva and SecureSphere are registered trademarks of Imperva.
All other brand or product names are trademarks or registered trademarks of their respective holders.
#WP-BLINDSQLINJECTION-0908rev2

