
1

HACKER INTELLIGENCE INITIATIVE

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

2

HACKER INTELLIGENCE INITIATIVE REPORT

Executive Summary
New versions of a protocol such as HTTP/2 are touted as game changers with the goal of addressing the major shortcomings of the
existing versions. Unfortunately, everything new and shiny needs to be hardened and time-tested before a full-scale rollout. The web
application security research team at the Imperva Defense Center took a hard look at the server side implementations of the HTTP/2
protocol and found four high-profile vulnerabilities.

In this study, we found an exploitable vulnerability in almost all of the new components of the HTTP/2 protocol. The four different attack
vectors we discovered are Slow Read, HPACK (Compression), Dependency DoS and Stream abuse. The five popular servers under
test from various vendors were found to be vulnerable to at least one attack vector, with Slow Read being the most prevalent. It would
be fair to conclude that other implementations of the HTTP/2 protocol may suffer from these vulnerabilities too. The Imperva Defense
Center research team worked with the vendors to make sure the vulnerabilities were fixed before publishing this report.

It takes a village to raise a child. And it pays to allow new technology to mature before planning for a significant change of
infrastructure. Applying the same concept to new protocols, vendors alone cannot make a new protocol secure, it takes the full
strength of the security industry to harden the extended attack surface. Traditionally, the research team approaches most problems
with the mindset of a builder, but this is one case where the mindset of a hacker was required to mitigate future threats.

Introduction and Research Motivation
The HTTP protocol is one of the main building blocks of the World Wide Web. It is a simple request-response protocol, designed in
1965 for the client-server model and roughly still holds up today. Over the years, the Internet has been changed significantly while
the communication protocol stayed the same except for some minor changes. Asynchronous mechanisms like Iframe tags and AJAX
were introduced to accommodate the change of Internet content delivery from the transformation of simple hypertext pages into web
pages that have dozens to hundreds of resources. Moreover, these mechanisms are used heavily to decrease the loading time of web
pages and make client interaction with the application more fluid.

The HTTP/2 protocol was designed to be the next-generation protocol for web applications. While keeping some of the semantics
of older HTTP/1.x, the new protocol displays a complete technical makeover and introduces new significant mechanisms. As in many
other cases, this dramatic change and increased complexity are bound to come at a price–that of extending the attack surface and
introducing new vulnerabilities into servers and clients.

The primary mandate for the web application security research group, a division of the Imperva Defense Center, is to understand
the risks and threats to web technologies as they evolves. The web application security group, staying faithful to its security mandate,
initiated a concerted effort to do the initial mapping of HTTP/2 server-side vulnerabilities. The best way to improve the security of
standards and their corresponding implementations is through meticulous scrutiny–understanding the attack surface, identifying
potential implementation pitfalls, looking for these flaws in implementations and putting a spotlight on the places where it gets
translated into vulnerabilities. We set out to understand the risks our customers may be exposed to when adopting the new protocol.
We also wanted to guarantee that these risks are responsibly communicated to vendors of HTTP/2 implementations and get
adequately mitigated by both the vendors and the Imperva SecureSphere Web Application Firewall (WAF).

The vendors were notified of all the vulnerabilities described in this document before publishing. We coordinated a responsible
disclosure process with Microsoft, Apache, Nginx, Jetty and nghttp communities to prevent these vulnerabilities from being exploited
after the publication of this report. The mitigation of the vulnerabilities was through security fixes done in coordination with the vendors.

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

3

HACKER INTELLIGENCE INITIATIVE REPORT

HTTP/2 Protocol
Highlights

The HTTP/2 protocol can be logically divided into three layers: The transmission layer, including streams, frames and flow control;
HPACK, binary encoding and compression protocol; and the semantic layer, which is an enhanced version of HTTP/1.1 enriched
with server Push capabilities.

The primary motivation for the transition into binary encoding and HPACK compression is to reduce bandwidth, while the other
components are designed to reduce roundtrips and accelerate the loading time of complex web pages. Thus, HTTP/2 is expected
to significantly improve the loading time and the overall browsing experience of web users while sometimes putting a heavier
computational burden on servers.

The main new components in this protocol are:

• Multiplexing–multiple streams can be concurrently carried over a single TCP connection
• Compression–HTTP headers are compressed using a combination of compression schemes (static Huffman coding and context

adaptive coding)
• Flow control and dependency–mechanisms that allow HTTP/2 clients and servers to signal how to transmit objects
• Resource push–mechanism that facilitates pushing resources from HTTP/2 servers to their clients

As in HTTP/1.1, the HTTP/2 is built on top of the TCP/TLS layer. The main building blocks of HTTP/2 transmission are as follows:

• HTTP/2 Frames: The basic HTTP/2 data unit, replacing HTTP/1.1 header and body format. As opposed to HTTP/1.1 ASCII
encoding, HTTP/2 frames have a binary encoding. Frames are divided into Header frames, Data frames and Setting frames.

• HTTP/2 Streams: HTTP/2 replacement of HTTP/1.1 Request-Response Protocol. HTTP/2 Stream is a bidirectional channel on
which frames are transmitted. A stream includes a single request and a single response.

• TCP Connection: HTTP/2, to reduce the number of TCP connections used by the server, allows a single TCP connection to carry
multiple streams. See Figure 1: Frames in a connection

Figure 1: Frames in a connection

HTTP/2.0 connection

stream 1
DATA

stream 3
HEADERS

stream 3
DATA

stream 1
DATA

stream 5
DATA

…

ServerClient

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

4

HACKER INTELLIGENCE INITIATIVE REPORT

Streams and Flow Control

Several requests can use the same TCP connection in parallel with each request having a different stream. In a typical HTTP/2 scenario
the client opens a new stream, sends a request over it in header frames and data frames, and waits for the server to respond. The server
sends the response back on the same stream and closes it. When the server finishes, the stream (identified by a stream identifier)
cannot be used again. Clients are only allowed to open streams with odd numbered identifiers, while servers open the even numbered
identifiers. See Figure 2: Stream states.

Figure 2: Stream states
Source: rfc7540

HTTP/2 flow control, applicable to streams, is based on the following mechanisms:

• Stream concurrency: Carrying multiple streams over a single TCP connection
• Flow Control: receiver signals the sender for the maximal amount of data it is allowed to transmit (over a stream/TCP connection)
• Stream priority: Sender signals the receiver for the priority of this stream, compared to others
• Stream dependency: Sender signals the receiver on recommended order for processing the streams

The flow control mechanism has many parameters that can be used by the endpoints to configure the connection (using Setting
frames) including SETTINGS_MAX_CONCURRENT_STREAMS to set the maximal number of concurrent streams over a TCP connection,
WINDOW_UPDATE to indicate the maximal amount of data a receiver allows the sender to transmit, and much more. Other parameters
like a stream priority (in Priority frame) and stream dependency in other streams (within header frame) can be sent by the sender when
initiating a new stream.

The rich collection of novel flow control mechanisms gives significant power to the sender to affect the transmission protocol, which
can be used by the typical sender to optimize the server side reception process. However, in the hand of a malicious sender this power
to influence the processing at the receiver can be translated into intensive resource consumption and for some server implementations
also to a Denial of Service (DoS) attack.

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

5

HACKER INTELLIGENCE INITIATIVE REPORT

The priority and dependency mechanisms allow each peer to express how it can signal the other peer to allocate resources
to streams by building a weighted dependency tree of streams. The HTTP/2 RFC gives much freedom in interpretation to the
endpoints, in regards to dependency mechanisms, and they can altogether ignore these signals.

As opposed to that, the window-size mechanism, which allows the endpoints to signal how many bytes they are willing to get
in a stream or connection, is mandatory. The window size can be updated as the peer progresses in data parsing.

HPACK

HTTP/2 header compression relies on the similarity of request headers coming from a single client to reduce the bandwidth
consumption of header transmission, which has increased dramatically over the years with the HTTP textual encoding. To address
security issues, mostly leakage of private data (as was done in CRIME, TIME and BREACH attacks), the HPACK protocol gives away
some level of compression for the sake of preventing these attacks. The HPACK protocol relies on a static encoding table and dynamic
encoding table. As opposed to the fixed static table, predetermined for the protocol, the dynamic table is used as a cache for each
connection direction separately. The sender sets the size of the dynamic table, but shall not exceed a maximal size announced
by the receiver. See Figure 4: HPACK example.

Figure 3: HPACK example
Source: Wikimedia.org

When transmitting a header name or value, the sender chooses whether to send it explicitly (ASCII encoding or the static Huffman
encoding specified in the RFC) or to refer to the location of the value in the dynamic table, when this value appears in the table.
The sender controls the population of the dynamic table, which signals to the receiver what values to insert to the table.

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

https://tools.ietf.org/html/rfc7541
https://commons.wikimedia.org/wiki/File:HTTP_2_Header_Compression_HPACK.svg

6

HACKER INTELLIGENCE INITIATIVE REPORT

Server Push

The HTTP/2 Server Push mechanism allows the server to send resources proactively without waiting for a request, when it believes
the client will need them, as shown in Figure 4: Server Push.. For example, in a typical web page delivery scenario, the server will
send the requested page to the client and immediately push all the page resources to the client (each in a server-initiated stream),
including CSS, javascript, images and HTML components. This saves the round-trip time and reduces the page-loading time.

Figure 4: Server Push

HTTP/2 Security Considerations

The designers of HTTP/2 made significant effort to identify and address security risks involved in the new protocol through design
choices, e.g., preferring HPACK on a better compression algorithm, or implementation guidelines, e.g., suggesting clients to avoid
compressing sensitive data like session cookies.

However, as we have found in this research, implementations of HTTP/2 servers do not always follow these guidelines. In at least
two cases we found HTTP/2 implementations that specifically failed to account for the typical traps designers warn about. See
Flow Control DoS, Dependency Cycle. One example is an attack based on abuse of the flow control WINDOW_UPDATE for DoS
attacks, which was specifically warned about as referenced in Figure 5: RFC Security Warnings. Another example is the risk of
processing large header blocks in HPACK implementation, which can be used for causing intensive memory consumption on
the server. See HPACK bomb.

Figure 5: RFC Security Warnings

Browser

HTTP/1.1

Server

Server
builds
page

Network
idle

GET /index.html

Request other pageresources

<html><head>…

Browser

HTTP/2

Server

Server
builds
page

Brower
can reject

PUSH

GET /index.html

Request other pageresources

<html><head>…

Push criticla resources

e.g. CSS

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

7

HACKER INTELLIGENCE INITIATIVE REPORT

HTTP/2 Deployment

The adoption of HTTP/2 protocol in the field is moving very fast. All of the major browsers support the HTTP/2 protocol as do all
of the major application servers, including IIS, Apache, and NGINX. Also, Content Delivery Networks (CDNs) like Imperva Incapsula,
CloudFlare, and Akamai; and Load Balancers like F5 Big-IP, all support HTTP/2 termination.

According to W3Techs, 6.5% of all the websites (~64 million sites) and 13.5% of the top 1000 sites, including Mega-websites like
Twitter, Facebook, and Google, are using HTTP/2. It is interesting to note that the adoption rate for the top million sites is 18.5%,
significantly higher. We attribute this phenomenon to the increasing reliance of websites on CDNs such as Incapsula, Cloud Flare,
and Akamai, which show HTTP/2 support to clients even when the web server itself does not support it. While this can improve user
experience, it could be dangerous if not done properly, as the intermediaries can expose the server to new vulnerabilities.

HTTP/2 Attacks
Migrating the Internet to HTTP/2 involves all the Internet players, clients, servers, and infrastructures to adjust or even rewrite a huge
amount of code, in addition to the HTTP/2 mechanisms themselves. Releasing a large amount of new code into the wild in a short
time creates an excellent opportunity for attackers.

In the research, we focused on server-side implementation as Apache, IIS, Ngnix, Jetty and nghttp. The first phase of the study was
to understand the attack surface–the new mechanisms introduced and analyze their potential risks. The immediate suspect was the
influence of HTTP/2 clients on the transmission protocol, and thus on the server’s processing when serving HTTP/2 clients. More
specifically, we asked ourselves whether specific HTTP/2 settings, when invoked by the client, can make the server crash.

Victim 1–HTTP/2 Stream Multiplexing (CVE-2016-0150)

The Stream Multiplexing mechanism tunnels multiple sessions through a single HTTP/2 connection. The risk in this mechanism stems
from the fact that the partition of the connection is purely logical, and as such can be used to manipulate the server or to send frames
out of context. See Figure 6: Stream Reuse on IIS.

Figure 6: Stream Reuse on IIS

HTTP/2 stream represents one request-response cycle and once closed, the stream identifier is not supposed to be used over the
same connection. See Figure 7: Stream reuse attack diagram. While the RFC document clearly indicates this requirement we decided
to test its implementation in practice. We created a script that reuses a closed stream identifier in the same connection. Figure 8: IIS
stack back trace, shows a schematic description of this attack. Soon enough we found our first vulnerable implementation. Due to a
flaw in the HTTP.sys driver in IIS 10, when the server receives two requests on the same stream, the result is the blue screen of death
as shown in Figure 9: HTTP.sys BSOD. We did not explore the crash further, but it is important to note that such behavior hints on
memory error, possibly one process stepping on the memory of another process, which under certain circumstances can lead
to arbitrary code execution.

Attack Type Vulnerable Server Affected Versions

Stream Reuse IIS 10

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

https://w3techs.com/technologies/details/ce-http2/all/all
http://isthewebhttp2yet.com/measurements/adoption.html
https://technet.microsoft.com/en-us/library/security/ms16-049.aspx

8

HACKER INTELLIGENCE INITIATIVE REPORT

Figure 7: Stream reuse attack diagram

Figure 8: IIS stack back trace

Figure 9: HTTP.sys BSOD

Client Server

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

9

HACKER INTELLIGENCE INITIATIVE REPORT

Victim 2 – HTTP/2 Flow Control

Figure 10: Slow Read Attacks on Various Servers

Since the RFC explicitly marked the flow control feature as a security hazard, it was one of the first candidates we chose to examine.
The HTTP/2 window mechanism resembles the TCP window mechanisms that were the target to many attacks in the in the past,
including zero-window and slow read attacks. When reducing or even resetting the inbound window size while asking for a large
resource, the sender may keep the connection open for a long or even unlimited period, and consumes the server resources.
Thus, it was reasonable to believe that the new implementation of this mechanism in HTTP/2 would suffer the same problems.

Slow Read Attack (CVE-2016-1546)

See Figure 10: Slow Read Attacks on Various Servers. When aimed at vulnerable server, Slow Read attacks can consume all of the
worker threads in the server and result in DoS and crash the server. While the attacker, in the original setting had to open as many
TCP connections as the victim server, in the HTTP/2 setting the attacks becomes simpler, since the attacker can use the stream
multiplexing capabilities to multiplex a large number of streams over a single TCP connection. Although the server maintains a single
TCP connection, it dedicates a thread per stream and thus the result of the attack is consumption of all the worker threads of the
victim server. The fact that the asymmetry between the client and server resources) is amplified, makes the attack much easier to
mount and target at powerful web servers, even with minimal computational resources.

Our malicious client, to implement Slow Read, had asked for a large resource from the server, and set the WINDOW_UPDATE
parameter to a very small size, telling the server that the maximal amount of data it is permitted to transmit on the stream is very small.
We updated the window size with small increments, each time allowing few more bytes to come in, and expected the server, trying
to provide this large resource to the malicious client, will allocate resources for processing of this stream and will not free them until
the entire data is transmitted–practically never. We repeated this process with multiple streams and expected that in places where our
assumptions held, at some point the server would be unable to service other clients.

While the basic idea of Slow Read attacks is straightforward and has been studied for years, we found out that most servers we
checked are vulnerable. The behavior of servers in Slow Read situations depends on the type and structure of the requests sent,
but after examining different types and structures of requests, we were able to mount at least one practical attack scenario for most
of the servers examined.

Attack Type Vulnerable Server Affected Versions

Slow POST Jetty 9.3

Slow GET Apache 2.4.18

Slow GET IIS 10

Slow GET Nginx 1.9.9

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

https://en.wikipedia.org/wiki/Sockstress#Small_window_stress
https://en.wikipedia.org/wiki/Denial-of-service_attack#Slow_Read_attack
https://httpd.apache.org/security/vulnerabilities_24.html

10

HACKER INTELLIGENCE INITIATIVE REPORT

Slow Read on Jetty

When receiving a POST request to a resource larger than the remaining window size, Jetty servers send the thread that handles
the request to sleep for 30 seconds. When repeating the process every 30 seconds, the attacker can keep a single thread sleeping
for as much time as it wants. In parallel, the attacker repeats the process with other streams, causing the server to allocate all its
resources to sleeping threads and to stop serving clients. See Figure 11: Jetty Slow POST Attack and Section Jetty Slow Read
Attack (POST) in Appendix.

Figure 11: Jetty Slow POST Attack

Slow Read on Apache

For Apache servers, the effective request method was GET, again directed to a resource larger than the remaining window size.
Also in this case, the server thread that handles the request goes to sleep when not having sufficient window size to send the rest
of the response. To prevent the Apache server from killing the thread, the attacker can send further WINDOW_UPDATE frames as
described in figure 14. As long as the attacker sends WINDOW_UPDATE frames, the thread is kept alive, and when replicating this
scenario, we were able to occupy all the threads of the server easily, and the server stopped responding to other clients.
Figure 12: Apache/IIS Slow GET Attack and see Apache Slow Read Attack (GET) in the Appendix.

Client Server

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

11

HACKER INTELLIGENCE INITIATIVE REPORT

Figure 12: Apache/IIS Slow GET Attack

Slow Read on IIS

We found the Apache variant of the Slow Read attack, as described in figure 12, highly effective on IIS servers, requiring less
than 20 requests to make the server unavailable for other clients. This attack can be easily achieved using a single connection.

Slow Read on Nginx

In Nginx we used a slightly different attack scenario as the original one did not work, using 20 TCP connections and opening
as many streams as MAX_CONCURRENT_STREAM allows with the server. See Figure 13 - Nginx Slow GET Attack. After a relatively
small number of connections, the server stopped responding to the attacker requests and other clients accessing the server
received the 500 response code (Internal Server Error).

The attack scenario is more intensive than the previous ones, requiring more resources on the attacker side, and having a clear
footprint on the server side. However, with reasonable effort, the attack remains practical. Opening and controlling 20 TCP
connections can be easily achieved using a single client or from a small number of compromised machines. IP-based rate limit
mechanisms can be bypassed in various ways, e.g., routing the attack through the TOR network.

Client Server

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

12

HACKER INTELLIGENCE INITIATIVE REPORT

Figure 13: Nginx Slow GET Attack

We reported about the attack to Nginx, and it turned out that they are already aware of it.

Victim 3-Dependency and Priority

When looking on the new mechanisms in the transmission layer, also known as the binary layer, the new dependency and priority
mechanisms stand out from a security perspective. The fact that the mechanisms are optional and that even when implemented,
complying with the RFC recommendation is not mandatory, we suspected that some edge cases will not be handled properly
by server implementations.

First, the size of the dependency tree is not limited. Thus, a server that naively trusts the client may be foiled to build a dependency
tree that will consume its memory. Second, we suspected client-generated edge case in the dependency tree—such as dependency
cycles, or rapid changes in the dependencies, sometimes conflicting with each other—will be ignored by developers and may result
with unexpected consequences such as “hopefully” heavy CPU consumption or unreasonable memory consumption. With these
potential risks in mind, we could understand why some implementations like Jetty, chose to skip this feature completely in the
implementation as shown in Figure 14.

Figure 14: Jetty (lack of) priority implementation

Client Server

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

https://trac.nginx.org/nginx/ticket/626

13

HACKER INTELLIGENCE INITIATIVE REPORT

Dependency Cycle DoS

Figure 15: Dependency Cycle DoS

According to the RFC, the dependency graph should be a tree as a cycle in this graph may invoke and unwanted behavior such
infinite loop or memory overrun. Additionally, the size of the graph is not limited by the RFC so each server can set its size limitation.
Potentially invoking many graph operations may reduce server performance. See Figure 15: Dependency Cycle DoS.

Previous to our research, such vulnerabilities were found in nghttp2 and Apache (whose HTTP/2 implementation is derived from
nghttp2). Nghttp2 restricts the dependency graph size to MAX_CONCURRENT_STREAMS. When a client tries to create a larger graph
using priority frames, the server throws away old streams. However, due to some flaws in the memory cleanup, an attacker can still
cause DoS or may even be able to execute arbitrary code. This vulnerability has been fixed in nghttp2 1.7.0 as part of a more general
memory cleanup issue (CVE-2015-8659). However, further exploration showed that other implementations fall into the same trap.

DoS on nghttpd

When looking on the new mechanisms in the transmission layer, also known as the binary layer, the new dependency and priority
mechanisms stand out from a security perspective. The fact that the mechanisms are optional and that even when implemented,
complying with the RFC recommendation is not mandatory, we suspected that some edge cases will not be handled properly by
server implementations.

First, the size of the dependency tree is not limited. Thus, a server that naively trusts the client may be foiled to build a dependency
tree that will consume its memory. Second, we suspected client-generated edge case in the dependency tree—such as dependency
cycles, or rapid changes in the dependencies, sometimes conflicting with each other—will be ignored by developers and may result
with unexpected consequences such as “hopefully” heavy CPU consumption or unreasonable memory consumption. With these
potential risks in mind, we could understand why some implementations like Jetty, chose to skip this feature completely in the
implementation as shown in Figure 14.

Figure 16: Dependency Cycle for 5 streams—initial state

5 7 9 11 13

Attack Type Vulnerable Server Affected Versions

Dependency Cycle DoS nghttpd Before 1.7.0

Dependency Cycle DoS Apache 2.4.18

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-8659

14

HACKER INTELLIGENCE INITIATIVE REPORT

Figure 17: Dependency Cycle for 5 streams–after adding 5 dependencies

Figure 18: Dependency Cycle for 5 streams–after adding 6 dependencies

Since the number of streams exceeded MAX_CONCURRENT_STREAM, the oldest stream (7) is thrown away, and the newest stream
(3) takes its place in the same address. However, due to a flaw in the cleanup process, the dependency pointer to stream 5 remains,
resulting in a dependency cycle between streams 3 and 5.

Figure 19: nghttp2 dependency cycle—Stream 3 and Stream 7 are in the same memory address,
which caused an infinite recursion

5 7 9 11 13

5 7
3

9 11 13

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

15

HACKER INTELLIGENCE INITIATIVE REPORT

In nghttpd V.1.0.2-DEV, after the attacker creates the cycle in the graph, the server enters an infinite recursion and crashes with
a segmentation fault as shown in Figure 19: nghttp2 dependency cycle—where Stream 3 and Stream 7 are in the same memory
address, causing an infinite recursion..

In nghttpd V.1.4.0, the code was changed with an assertion statement verifying that there is no cycle in the graph and throw Assertion
exception otherwise. However, the assertion exception is improperly handled and causes the server to crash and stop responding
to other clients as shown in Figure 20: nghttp2 V1.4.0 assertion, showing the Dependency Cycle Attack on Apache 2.4.18.

Figure 20: nghttp2 V1.4.0 assertion

Figure 21: nghttpd stack backtrace

Apache is using nghttp2 as its HTTP/2 engine. As a result, this vulnerability can also be exploited on Apache when using
a vulnerable version of nghttp2. Unlike nghttp2, the mishandled assertion only affects a single thread of the server. To exploit this
vulnerability, an attacker must repeat this attack until all allocated threads are exhausted. See Figure 21: nghttpd stack backtrace.

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

16

HACKER INTELLIGENCE INITIATIVE REPORT

HPACK (Compression)

From a security perspective, compression mechanisms have two major concerns. The first is the data leak risk (CRIME, TIME, BREACH),
applicable when compression precedes an encryption operation. These attacks use the length of crafted requests after gzip
compression to leak sensitive encrypted information such as cookies, user-agent, and other headers. The other concern is the risk of
a crafted zipped message that can cause unexpected behavior in the decoder as was done in zip bomb attacks. The idea behind this
attack is simple–the attacker sends the relatively small amount of data, which will catch a large amount of memory after decompression.

From the RFC it is clear that immunity against data leakage attacks was one of the design criteria for HPACK. Thus, we chose to focus
on the second type, DoS attacks, by crafting decoding mines. See Figure 22: HPACK Bomb Attacks

HPACK Bomb (CVE-2016-1544), (CVE-2016-2525)

Figure 22: HPACK Bomb Attacks

HPACK Bomb Attack on nghttpd (before 1.7.1)

We have found a vulnerability in the compression layer of HTTP/2. The RFC defines a mechanism that allows each peer to restrict
the size of the dynamic table (SETTINGS_HEADER_TABLE_SIZE):

“Allows the sender to inform the remote endpoint of the maximum size of the header compression table
used to decode header blocks, in octets. The encoder can select any size equal to or less than this value
by using signaling specific to the header compression format inside a header block (see [COMPRESSION]).
The initial value is 4,096 octets.”

However, the RFC does not provide any further restriction on the size of individual headers. Hence, the size of an individual header
is only restricted by the scale of the dynamic table. Figure 23 illustrates an attack in which we chose to generate a first stream with one
large header–as big as the entire table. Then we repeatedly open new streams on the same connection that reference this single large
header as many times as possible. The server keeps allocating new memory to decompress the requests and eventually consumes
all memory–denying further access by other clients.

Attack Type Vulnerable Server Affected Versions

HPACK Bomb nghttpd Before 1.7.1

HPACK Bomb Wireshark Before 2.0.2 and 1.12.10

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

http://blog.imperva.com/2013/03/a-perfect-crime-only-time-will-tell.html
https://en.wikipedia.org/wiki/Zip_bomb
https://nghttp2.org/blog/2016/02/11/nghttp2-v1-7-1/
https://www.wireshark.org/security/wnpa-sec-2016-05.html
https://tools.ietf.org/html/rfc7540

17

HACKER INTELLIGENCE INITIATIVE REPORT

Figure 23: HPACK Bomb

Client Server
Static table

1 :authority

2 :method GET

… … …

51 referer

… … …

62 User-Agent aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

Dynamic table

Figure 24: nghttpd memory consumption after decompressing 32K headers

Figure 25: nghttpd memory consumption after decompressing 128K headers

Figure 26: nghttpd memory consumption after decompressing 224K headers

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

18

HACKER INTELLIGENCE INITIATIVE REPORT

The default size of the dynamic table is 4KB. The server allows one request to contain up to 16K of header references. By sending
a single header of size 4KB and then sending a request with 16K references to this one header, the request is decompressed to 64MB
on the server side. As we open more streams on the same connection, we quickly consume more and more memory as shown
in Figures 24, 25, and 26. In our lab, 14 streams that consumed 896MB after decompression, were enough to crash the server.

Crashing Wireshark

The nghttpd server is a based on the nghttp2 library. The library itself counts on the application above it to manage its memory
correctly. Since nghttp2 is widely used as a library implementation of HTTP/2, this vulnerability can affect other applications that are
using it without paying attention to this issue. One example is Wireshark before versions 2.0.2 and 1.12.10: when trying to open
a network capture file taken from this attack (pcap file), Wireshark uses all the available CPU and a large amount of memory and then
hangs. Figure 32 was taken from a machine with a quad-core processor, therefore; 25 percent of CPU is a full resource consumption
of one core. See Figures 27 and 28: Wireshark performance graph. (CVE-2016-2525)

Figure 27: Wireshark is not responding when loading the pcap file

Figure 28: Wireshark performance graph, taken with Process Explorer

CPU Usage

60.1 KB

I/O

3.5 GB

Private Bytes

24.84%

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

19

HACKER INTELLIGENCE INITIATIVE REPORT

Summary and Conclusions
In this research, we have found four different attack vectors. We were able to find an exploitable vulnerability in almost all of the
new components of the HTTP/2 protocol. We tested five popular servers and found all to be vulnerable to at least one attack.
Thus, we believe other implementations of the protocol may suffer from these vulnerabilities especially those that rely on external
HTTP/2 libraries such as nghttp2 (see collateral damage section).

Figure 29: Summary of vulnerabilities, shows the vulnerabilities that we found per each server implementation.

Conclusions

This research is pointing out once again that new technology brings new risks. When releasing new code into the wild, it is only
a matter of time until new vulnerabilities are found and exploited. As with any new technology, HTTP/2 suffers from creating new
extended attack surfaces for attackers to target. Hence, server administrators need to understand they cannot simply turn on HTTP/2
and expect it to work without additional layers of security. Unfortunately, vendors usually cannot keep up with bad actors and allocate
enough resources to mitigate all the vulnerabilities before damage is caused. Furthermore, some vendors (mostly open source) share
the same code and therefore have the same vulnerabilities, meaning that vendors need to cooperate to mitigate a vulnerability which
makes things even more complicated and lengthy.

The solution lies with an external component in the network that aims to reduce these risks. Such a component can respond faster
to new vulnerabilities. When choosing a security vendor, consider one with a dedicated research group that monitors new
technologies and offers proven solutions in advance.

Hacker Intelligence Initiative Overview
The Imperva Hacker Intelligence Initiative goes inside the cyber-underground and provides analysis of the trending hacking
techniques and interesting attack campaigns from the past month. A part of the Imperva Defense Center research arm, the
Hacker Intelligence Initiative (HII), is focused on tracking the latest trends in attacks, web application security and cyber-crime
business models with the goal of improving security controls and risk management processes.

Server Slow Read HPACK Dependency Stream Abuse

Apache V V

IIS V V

Jetty V

Nghttpd V V

Nginx V

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

http://www.imperva.com/DefenseCenter
http://www.imperva.com/DefenseCenter/HackerIntelligenceReports

20

HACKER INTELLIGENCE INITIATIVE REPORT

Appendix–Code Snippets of Vulnerable Components

Jetty Slow Read Attack (POST)

The relevant vulnerable code is located in the process function inside the HTTP2 Flusher class.

When the stream window is less than zero, no new entry is inserted into the “actives” collection.

Figure 30: process() function in jetty/http2/HTTP2Flusher.java

When the thread arrives at the end of this function with “actives” collection empty, it returns Action.IDLE, which makes it go to sleep.

Figure 31: process() function in jetty/http2/HTTP2Flusher.java

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

21

HACKER INTELLIGENCE INITIATIVE REPORT

Apache Slow Read Attack (GET)

According to the server logs and code, we have found the server tries to send all the response data to the client in h2_session_process
function (h2_session.c):

Figure 32: h2_session_want_write() function in h2_session.c

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

22

HACKER INTELLIGENCE INITIATIVE REPORT

If the window is low, it calls to the h2_mlpx_out_trywait function (h2_mplx.c):

Figure 33: h2_mplx_out_trywait() function in h2_mlpx.c

This function sends the thread to sleep which ultimately results in the server’s DoS.

Dependency Cycle Attack on Nghttpd V.1.0.2-DEV

The relevant vulnerable code is located in the stream_update_dep_set_top function (nghttp2_stream.c). Under the assumption
the graph is a tree, the last line of the function contains a recursive call to itself.

Figure 34: stream_update_dep_set_top() function in nghttp2_streams.c

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

23

imperva.com

© 2016, Imperva, Inc. All rights reserved. Imperva, the Imperva logo, SecureSphere, Incapsula, ThreatRadar, Skyfence and
CounterBreach are trademarks of Imperva, Inc. and its subsidiaries. All other brand or product names are trademarks or
registered trademarks of their respective holders. HII_HTTP2_Report_0816_V1

HACKER INTELLIGENCE INITIATIVE REPORT

Dependency Cycle Attack on Apache 2.4.18

Following the server logs and code, we have found that the server asserts in nghttp2_stream_dep_remove_subtree function
(nghttp2_streams.c) before a cycle is created:

Figure 35: Dependency Cycle, Apache log file

Figure 36: nghttp2_stream_dep_remove_subtree() function in nghttp2_stream.c

Acknowledgment

The authors would like to thank Alex Maidanik and Avihai Cohen from Technion – Israeli Institute of Technology for their contributions
to this research initiative.

HTTP/2: In-depth analysis of
the top four flaws of the next
generation web protocol

