
White Paper

Imperva’s
Web Application
Attack Report
Edition #2 - January 2012

2

Imperva’s Web Application Attack Report

This document contains proprietary and confidential material of Imperva. Any unauthorized reproduction, use or disclosure of

this material, or any part thereof, is strictly prohibited. This document is solely for the use by Imperva employees and authorized

Imperva customers.

Table of Contents
1 Abstract	 3

2 Executive Summary	 4

3 Analysis Methodology	 6

4 Analysis Results	 7

4.1 Overview	 7

4.1.1 Attacks Categories	 7

4.1.2 Attacks Trends	 9

4.1.3 Geographic Dispersion	 10

4.2 Attack Automation	 11

4.2.1 Indicators of Automatic Attacks	 12

4.2.2 Example 1: Gaining access to an application’s database	 12

4.2.3 Example 2: Automated SQL injection vulnerability scan	 13

4.2.4 Combined Attacks	 14

4.2.5 HTTP Protocol Violations	 14

4.3 Technical Attacks	 15

4.3.1 SQL Injection	 15

4.3.2 Remote File Inclusion	 15

4.3.3 Local File Inclusion	 16

4.3.4 Directory Traversal	 16

4.3.5 Cross Site Scripting	 17

4.4 Business Logic Attacks	 17

4.4.1 Email Extraction	 18

4.4.2 Comment Spamming	 19

5 Recommendations	 21

3

Imperva’s Web Application Attack Report

1	Abstract
As a part of its ongoing Hacker Intelligence Initiative, Imperva’s Application Defense Center (ADC) observed and categorized

attacks across 40 applications, monitoring millions of individual attacks targeted at web applications over a period of six months,

June-November 2011. The analysis shows:

›	 Hackers continue to increase the scale of their attacks: In our last report, we explained that websites are probed about

once every two minutes, or 27 times per hour. Over the past six months, the number of probes has dropped to 18. Though

a drop, this change does not mean hackers are any less persistent. In fact, when applications are attacked, hacker firepower

actually saw a 30% increase. In July, we reported that applications experience about 25,000 attacks per hour. In the last six

months, this has increased to nearly 38,000 attacks – or ten per second.

›	 Hackers exploit five common application vulnerabilities: We have identified and investigated malicious traffic containing

the following technical attacks: Remote File Inclusion (RFI), SQL Injection (SQLi), Local File Inclusion (LFI), Cross Site Scripting

(XSS) and Directory Traversal (DT). Cross Site Scripting and Directory Traversal are the most prevalent classical attack types.

›	 Hackers are relying on business logic attacks due to their ability to evade detection: We also investigated two types

of Business Logic attacks: Email Extraction and Comment Spamming (EmExt and ComSpm, respectively, in following Figures

and Tables). Comment Spamming injects malicious links into comment fields to defraud consumers and alter search engine

results. Email Extraction simply catalogs email addresses for building spam lists. These Business Logic attacks accounted for

14% of the analyzed malicious traffic. Email Extraction traffic was more prevalent than Comment Spamming. A full anatomy

of BLAs is described in this report.

›	 The geographic origin of Business Logic attacks were:

–	 Email extraction was dominated by hosts based in African countries.

–	 An unusual portion of the Comment-spamming activity was observed from eastern-European countries.

At the end of our report, we provide a list of technical recommendations for security teams.

4

Imperva’s Web Application Attack Report

2	Executive Summary
At the Gartner Cyber Security Conference keynote in June 2011, New York Times technology columnist David Pogue called 2011

“the year of the hacker.” Indeed, 2011 witnessed several major high-profile breaches across government and private enterprises

along with the growth in hacktivism, nation-sponsored hacking as well as “old fashioned” hacking for profit. Imperva’s web

application attack report (WAAR) is designed to help security teams as well as nontechnical business managers understand cyber

security risks and to identify mitigation steps.

Our key findings this time:

›	 Hackers continue to increase the scale of their attacks: In our last report, we explained that websites are probed about

once every two minutes, or 27 times per hour. Over the past six months, the number of probes has dropped to 18. Though

a drop, this change does not mean hackers are any less persistent. In fact, when applications are attacked, hacker firepower

actually saw a 30% increase. In July, we reported that applications experience about 25,000 attacks per hour. In the last six

months, this has increased to nearly 38,000 attacks – or ten per second.

Attack automation is attractive for several reasons:

–	 Automatic tools enable an attacker to attack more applications and exploit more vulnerabilities then any manual method

possibly could.

–	 The automatic tools that are available online save the attacker the trouble of studying attack methods and coming up with

exploits to applications’ vulnerabilities. An attacker can just pick a set of automatic attack tools from the ones that are freely

available online, install them, point them at lucrative targets and reap the results.

–	 The tools use resources, like compromised servers that are employed as attack platforms, more efficiently.

In fact, there were two prominent examples of automated attacks this year:

–	 FBPwn: This tool, developed in Egypt, automatically creates copies of real Facebook user accounts, friends users and then

extracts personal data from those who accept the request. Considering Facebook’s rapid growth, this example highlights

how hackers must scale in parallel.1

–	 Refref: This tool, developed by hacktivist group Anonymous, automates SQL injection attacks with the purpose of shutting

down the application. This attack, known as a denial of service (DOS), has traditionally been accomplished in the past by

bot armies at some expense to the hacker. Refref allows a single hacker to bring applications down by themselves without

relying on 3rd parties.2

›	 Hackers exploit five common application vulnerabilities: We have identified and investigated malicious traffic containing

the following technical attacks: Remote File Inclusion (RFI), SQL Injection (SQLi), Local File Inclusion (LFI), Cross Site Scripting

(XSS) and Directory Traversal (DT). Cross Site Scripting and Directory Traversal are the most prevalent classical attack types.

Why are these vulnerabilities targeted? Hackers prefer the path of least resistance and application vulnerabilities offer an

rich target. As a Forrester survey recently noted, “Most security organizations continue to focus inappropriate attention on

network vulnerabilities and reactive network security tools rather than on proactive application security practices.”3

1	 http://blog.imperva.com/2011/09/the-automation-of-social-engineering.html
2	 http://www.theregister.co.uk/2011/08/04/anon_develops_loic_ddos_alternative/
3	 Forrester Research, Forrsights: The Evolution Of IT Security, 2010 To 2011, February 2011.

5

Imperva’s Web Application Attack Report

Figure 1: Relative volume of malicious traffic

›	 Hackers are relying on business logic attacks due to their ability to evade detection: We also investigated two types

of Business Logic (BLA) attacks: Email Extraction and Comment Spamming (EmExt and ComSpm, respectively). These

Business Logic attacks accounted for 14% of the analyzed malicious traffic. Email Extraction traffic was more prevalent

than Comment Spamming. What makes BLAs attractive for hacking? BLAs follow a legitimate flow of interaction of a

user with the application. This interaction is guided by an understanding of how specific sequences of operations affect

the application’s functionality. Therefore, the abuser can lead the application to reveal private information for harvesting,

allocate her a disproportionate amount of shared resources, skew information shared with other users, etc. – often bypassing

security controls. The motivation for BLAs is that the attacker can convert these effects to monetary gains. In fact, we detail

the anatomy of BLAs from start to finish.

›	 The geographic origin of business logic attacks:

–	 Email extraction was dominated by hosts based in African countries. We believe the spam traditions, originating with the

Nigerian 419 scams, continue today in African nations.

–	 An unusual portion of the Comment-spamming activity was observed from eastern-European countries. As Brian Krebs

noted, Eastern Europe, particularly Russia, have flourishing industries selling fake medicines and other scams.4

4	 http://krebsonsecurity.com/2011/02/pharma-wars/

6

Imperva’s Web Application Attack Report

3	Analysis Methodology
This security summary report is based on observing and analyzing Internet traffic to 40 web applications during the past 6 months

(June-November 2011). We extracted from the traffic security attacks on these applications, categorized them according to the

attack method, and identified patterns and trends within these attacks.

Monitoring of the web applications deployed at these sites over a period of several months was accomplished using automatic

tools. The logged security events were analyzed using Imperva’s special-purpose software and knowledge base. This analysis used

several measures, including matching to known attack signatures, comparison to black lists of malicious hosts, and calculation of

statistical properties of malicious traffic. Imperva’s security experts performed additional detailed analysis of the important events

and patterns.

We would like to emphasize the changes made in our analysis methodology relative to our previous Web Attack Analysis Report5.

These changes had enhanced the collected data and had affected the reported results compared to those reported for November

2010-May 2011:

›	 We have added 10 web applications to the observed applications set, so our data is more varied.

›	 We have categorized the observed malicious traffic into 7 types, compared to 4 types in the previous report. The new

categories include business logic attacks, which were not analyzed in the previous period’s report.

›	 We have improved and refined our automatic web attack detection and analysis tools, in accordance with new attacks

methods and newly published applications’ vulnerabilities that were reported during the last months.

Therefore, this report represents a better understanding of current attacks employed against web applications in the wild.

The insights from the analysis led us to conclusions about the threatmap faced by web applications in today’s World Wide Web.

We also came up with recommendations for thwarting the prevalent threats and improving web security.

5	 See: http://www.imperva.com/download.asp?id=114

7

Imperva’s Web Application Attack Report

4	Analysis Results
This report summarizes our analysis of attacks on web applications. The malicious traffic we observed can be broadly described

as either Technical attacks or Business Logic attacks (BLA). Technical attacks seek security weaknesses in an application and use

exploits which are tailored to these vulnerabilities, for purposes like controlling the application’s server, modifying the application’s

data or harming the application’s users. BLAs mimic an innocent application user and through a flow of legitimate operations force

the application to behave in a manner that is profitable to the attacker.

The technical attack types that were frequently observed in the data are: SQL Injection, Local File Inclusion, Remote File Inclusion,

Directory Traversal and Cross Site Scripting. Of the Business Logic attacks, Email Extraction and Comment Spamming were the

most visible.

We begin our analysis by describing phenomena and trends that are common to the entire observed malicious traffic. We dedicate

a section to define each attack type and describe specific phenomena associated with it in sections 4.3-4.4. Section 4.2 delves into

the use of automation in all attack types.

4.1	Overview
4.1.1 - Attacks Categories
The relative volume of traffic associated each attack type during June-November 2011 is shown in Figure 2. We have identified

and investigated malicious traffic containing the following technical attacks: Remote File Inclusion (RFI), SQL Injection (SQLi), Local

File Inclusion (LFI), Cross Site Scripting (XSS) and Directory Traversal (DT). Cross Site Scripting and Directory Traversal are the most

prevalent classical attack types.

We also investigated two types of Business Logic attacks: Email Extraction and Comment Spamming (EmExt and ComSpm,

respectively, in following Figures and Tables). These Business Logic attacks accounted for 14% of the analyzed malicious traffic.

Email Extraction traffic was more prevalent than Comment Spamming.

Figure 2: Relative volume of malicious traffic

8

Imperva’s Web Application Attack Report

Table 1 and Table 2 summarize the statistical attributes of the occurrence rate of each attack category:

›	 All attacks showed large variance in occurrence rate. This is true in particular for SQLi.

›	 The attack traffic has short periods of activity peaks punctuated with long periods of low activity. We use the median of the

rate of attacks as an estimate of the activity without the peaks, since it is less sensitive to outliers. The average attack rate is 2-3

times higher than the commonly-observed rate.

›	 As further proof that most of the malicious activity of each category occurs within short bursts, and to get a feel for the shape

of the asymmetric distribution of attack rates over time, we calculated the 1st and 3rd quartiles. These are the occurrence rates

under which the lowest 25% or 75% of the hourly (or daily) occurrence rates were observed. 75% of the time the attack rate

does not exceed 2-3 times the commonly-observed rate indicated by the median.

	 In our last report, we explained that websites are probed about once every two minutes, or 27 times per hour. Over the

past six months, the number of probes has dropped to 18. Though a drop, this change does not mean hackers are any less

persistent. In fact, when applications are attacked, hacker firepower actually saw a 30% increase. In July, we reported that

applications experience about 25,000 attacks per hour. In the last six months, this has increased to nearly 38,000 attacks – or

ten per second.

Maximum Median 1st Quartile 3rd Quartile Average Standard Deviation

SQLi 13684 8 4 22 51 308

RFI 1033 8 4 19 33 84

LFI 2436 21 10 45 54 126

DT 5573 33 14 70 73 247

XSS 5612 67 12 129 99 269

ComSpm 1977 11 4 25 18 38

EmExt 7615 10 5 17 28 213
Table 1: Hourly attack activity statistics

Maximum Median 1st Quartile 3rd Quartile Average Standard Deviation

SQLi 28121 610 327 1321 1112 2255

RFI 5627 240 130 562 467 640

LFI 15075 594 397 972 1193 1905

DT 7193 1425 658 2054 1716 1439

XSS 9962 2540 481 3498 2464 2156

ComSpm 2608 377 131 543 380 298

EmExt 23898 364 233 483 655 2125
Table 2: Daily attack activity statistics

9

Imperva’s Web Application Attack Report

4.1.2 - Attacks Trends
Analyzing the number of attacks and the attacks’ distribution over the last 6 months shows the following general trends:

›	 The total number of attacks against the 40 observed applications is in the range 130-385 thousand per month, with peak

attacks reaching 38K.

›	 The total number of attacks, as well as the number of observed attack of each type, shows considerable variation. Long term

trends are overshadowed by seasonal trends and especially occasional attack bursts.

›	 RFI, LFI, SQLi, DT and XSS attacks peaked during August.

›	 LFI is usually twice as common as RFI. SQLi is more prevalent than RFI. Except for August, each was generally observed

between 10 and 40 thousand times a month.6

Figure 3: Monthly counts of attacks types

Figure 4: Monthly volume of attacks

6	 Ironically, neither gets the respect they deserve from the security community. For more on why this is the case:
http://blog.imperva.com/2011/12/why-rfi-gets-no-respect.html.

10

Imperva’s Web Application Attack Report

4.1.3 - Geographic Dispersion
Even though the identity of the host that initiated an attack is not necessarily indicative of the identity of the attacker that controls

it, we have investigated the geographic distribution of the attack-initiating hosts as determined by their IP addresses (Table 3 and

Table 4)7:

›	 For all attack types the attackers were spread around the world.

›	 The leading source countries were rather consistent across all attack types: Most of the attacks (both in absolute numbers and

counting the distinct hosts initiating the attacks) were from the United States for RFI, LFI, SQLi and DT. This follows the trend

we saw in our previous Web Application Attack Report.

›	 However, some attack types showed distinct geographic characteristics:

–	 We observed a significant portion of SQLi attacks coming from a relatively small number of Chinese hosts. This follows the

trend we saw in our previous report.

–	 Email extraction was very distinctive since it was dominated by hosts based in African countries.

–	 An unusual portion of the Comment-spamming activity was observed from eastern-European countries.

The extent to which each attacking host is used for a specific attack type varies. However, looking at the ratio of attacks to attacking

hosts (Table 5), we noticed that hosts that participate in SQLi, RFI or LFI attacks often issue more attack-related traffic than hosts

that participate in Directory Traversal, Email Extraction or Comment Spam. We can speculate about the reasons for this difference:

›	 Automatic tools used in the former attacks are more generic. Since the tool targets a wider variety of applications, scans more

options for vulnerabilities and attempts to use a wider set of exploits, the host on which it runs generates more observable

attack traffic.

›	 Reputation-based defenses are more commonly used against BLAs, if for no other reason than that identifying these attacks

based on attributes of each HTTP request is harder. Therefore, attackers spread BLAs over a larger number of hosts to reduce

the risk and effect of their black-listing.

RFI SQLi DT LFI Email extraction ComSpm

Country Attacks Country Attacks Country Attacks Country Attacks Country Attacks Country Attacks

USA 33 USA 143 USA 741 USA 50
European

Union
34

Russian
Federation

14

France 16 China 24 Canada 153 France 33 Senegal 33 Ukraine 11

Italy 5
United

Kingdom
10 France 34 Canada 15 Ivory Coast 13 USA 7

Germany 3 Sweden 9 Germany 22 Germany 15 USA 7 Germany 7

Russian
Federation

3 Germany 4
United

Kingdom
17 Spain 13 Italy 6 China 5

Republic of
Korea

3 Netherlands 4
Russian

Federation
14 Norway 11 Thailand 4

European
Union

3

Canada 3 Ecuador 4 Spain 14 Italy 10 Malaysia 3 Spain 3

European
Union

1 Vietnam 3 Italy 13
Russian

Federation
10 Germany 3 Latvia 3

Malaysia 1 Romania 3 Norway 12 Singapore 7 Ghana 2 Australia 2

Netherlands 1 India 2 Singapore 7 Netherlands 6 Nigeria 2 France 2

Table 3: Countries from which most attacks were initiated (attacks count in thousands)

7	 These geographic figures are not normalized by the overall traffic from these countries or the total number of host IPs in each country.

11

Imperva’s Web Application Attack Report

RFI SQLi DT LFI Email extraction ComSpm

Country Attackers Country Attackers Country Attackers Country Attackers Country Attackers Country Attackers

USA 790 USA 10124 USA 10157 USA 1537 Senegal 3299 USA 1078

Germany 138 China 922
United

Kingdom
1495 Germany 239 Ivory Coast 2382

Russian
Federation

823

France 125
Russian

Federation
348

Russian
Federation

1280 France 190
European

Union
1270 China 632

European
Union

80
United

Kingdom
289 Ukraine 602

European
Union

166 Thailand 665 Ukraine 571

United
Kingdom

79
European

Union
211 Germany 559

United
Kingdom

122 USA 423 Germany 370

Canada 74 Germany 159 Canada 515 Canada 119 Malaysia 282 Sweden 255

Republic of
Korea

73 Canada 140 China 466 Netherlands 112 Ghana 176
European

Union
225

Russian
Federation

63 Ukraine 111
European

union
354

Republic of
Korea

80 Nigeria 174 France 110

Italy 58 France 73 France 298 Italy 75 China 148
United

Kingdom
101

Netherlands 58
Republic of

Korea
61 Netherlands 187

Russian
Federation

69 India 143 Poland 96

Table 4: Countries with the most distinct attacking hosts

RFI SQLi DT LFI Email extraction ComSpm

Median 10 8 3 28 8 6

Average 21 62 10 65 17 12

Standard Deviation 35 360 33 114 23 25

Table 5: Ratio of attacks to attacking hosts per attack type

4.2 Attack Automation
Cyber-criminals are increasingly using automation to carry out their attacks on web applications. This phenomenon has several reasons:

›	 Automatic tools enable an attacker to attack more applications and exploit more vulnerabilities then any manual method

possibly could.

›	 The automatic tools that are available online save the attacker the trouble of studying attack methods and coming up with

exploits to applications’ vulnerabilities. An attacker can just pick a set of automatic attack tools from the ones that are freely

available online, install them, point them at lucrative targets and reap the results.

›	 The tools use resources, like compromised servers that are employed as attack platforms, more efficiently.

Automatic tools open new avenues for evading security defenses. For example, such a tool can periodically change the HTTP User

Agent header that is usually sent in each request to an application and that may be used to identify and block malicious clients. As

another example, sophisticated automatic tools can split the attack between several controlled hosts, thus evading being black-listed.

Warning signs of automated attacks detailed in section 4.2.1. Most of them are demonstrated in sections 4.2.2 and 4.2.3, where

we analyze specific automatic attack campaigns that were extracted from the observed traffic. We talk about the general-purpose

nature of automatic attack platforms in section 4.2.4. Finally, an indicator of automatic attacks at the HTTP protocol level is described

in section 4.2.5.

12

Imperva’s Web Application Attack Report

4.2.1 - Indicators of Automatic Attacks
There are several generic indicators that an automated attack is in progress. For example:

›	 Traffic characteristics like attack rate, attack rate change and attack volume. Obviously, if a single host issues HTTP requests to

an application at a high rate (e.g., 20 requests per minute) or interacts with it over a very long period, this traffic is software-

generated.

›	 Specific values in the HTTP User-Agent header. Many tools used to attack applications are actually developed as vulnerability

scanners for use by the application’s administrator. By default, these tools sign the traffic they generate with a special User-

Agent header. Attackers sometimes leave this default behavior as is when they abuse the scanner for their own purposes. A

black list of User-Agent values helps identify malicious scanning.

›	 Usually, HTTP requests generated by automation tools do not contain standard headers8 that web browsers usually send,

like Accept-Language or Accept-Charset. These headers show the languages and character sets that client software, like a

browser, can handle. Automatic tools usually do not send them, since they do not present the application’s responses as Web

pages. It must be emphasized that benign automatic tools, like search engine crawlers, also do not send these headers while

scanning a site. Nevertheless, the absence of headers usually sent by browsers should trigger close monitoring of the traffic.

Additional indicators of automated attack are more specific to the attack tool or the target application. Examples include:

›	 Attack tools use a predefined set of attack vectors. For example, SQL Injection tools generate attacks containing fragments

of SQL code. Sometimes these attacks are unusual enough that they can become a fingerprint of the tools, and identify the

attack with high certainty.

›	 Attack tools intentionally access resources of the application that are not exposed to a human user browsing the site.

For example, some RFI attacks directly access scripts in specific Content Management Systems in order to exploit their

vulnerabilities. Anomalies of this kind should be closely monitored.

4.2.2 - Example 1: Gaining access to an application’s database
The following is an example of a 2-stage attack on a single application from a single host. In the reconnaissance stage, the attacker

looked for potential targets – scanning the site for deployed web servers. In the second stage which occurred 4 days later, a specific

attack was directed from the same host to a single web application on this site. The attacking host is apparently a compromised

server located in the United States.

4.2.2.1 - Reconnaissance stage
The Dfind scanner is a known scanner that has been in use for several years9. It has a fingerprint of accessing the URL “/w00tw00t.

at.isc.sans.dfind:)” while looking for IP addresses of computers hosting web applications. Depending on the configuration of the

host, the returned error code can show the attacker that a web server is available there.

In the observed attack incident, Dfind was used to scan 87 IP addresses for web servers during a period of 21 minutes.

4.2.2.2 - Brute force login attack
phpMyAdmin is a free software tool written in PHP intended to handle the administration of MySQL database over the World Wide

Web. phpMyAdmin supports a wide range of operations with MySQL, from managing databases, tables, fields, relations, indexes,

users, and permissions, to the ability to directly execute any SQL statement.10

On one of the IP addresses that were scanned by Dfind, We have observed an automated brute-force attack on the authentication

of phpMyAdmin users. By using a vocabulary of commonly used weak passwords (e.g., “123456” and “1qa2ws”) the tool tries to gain

access to the web interface of the database administration application. The entire brute-force login attack was executed over 22

minutes using 6500 HTTP requests.

8	 See: http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
9	 See: http://isc.sans.edu/diary.html?storyid=900
10	See: http://www.phpmyadmin.net/home_page/index.php

13

Imperva’s Web Application Attack Report

4.2.2.3 - Early warning signs of automatic attack
This attack incident exhibited several of the warning signs discussed above:

›	 High rate of traffic – 4 requests per minute in the first stage and over 296 requests per minute over the second stage.

›	 Tool signature – The Dfind scanner has a unique fingerprint that shows up in the traffic.

›	 HTTP headers – the Dfind requests were sent without a User Agent header. However, the request during the login attack were

sent with an innocent-looking generic “Mozilla/4.0 (compatible; MSIE 5.00; Windows 98)” User Agent. The requests in both

stages were sent without browser-like Accept headers.

›	 IP reputation – the malicious activity identified in the first stage of the attack could have been used to add the attacking host

to a blacklist. This would have helped in identifying and blocking the second stage of the attack.

These signs, and especially their combination, could be used to identify and block this kind of automated attack, or at least slow it

down and make it considerably less effective.

4.2.3 - Example 2: Automated SQL injection vulnerability scan
The following is an example of a scanner searching for SQL injection vulnerabilities. In this case of automatic reconnaissance

activity, the tool enables the attacker to quickly try thousands of combinations of URLs and HTTP parameters of the application in

order to acquire potential targets for exploitation.

4.2.3.1 - Time-based blind SQL injection
The tool sends a harmless executable SQL snippet to the application, and parses the response for indications that it was executed.

If the application does not return the expected result of the code execution in the response, the tool uses time-based blind SQL

injection11: the tool sends the following SQL snippet to the application12:

	 declare @q varchar(8000) select @q = 0x57414954464F522044454C4159202730303A30303A313527

exec(@q) --

Which an MS-SQL database interprets as: WAITFOR DELAY ‘00:00:15’ (causing the database to simply wait for the

specified time). If the HTTP request takes at least 15 seconds to process then the tool notes that SQL commands can be executed

through the current URL and HTTP parameter. It also verified that the application uses MS-SQL database.

4.2.3.2 - Early warning signs of automatic attack
The automatic nature of the attack is seen from:

›	 The rate of malicious traffic: 880 HTTP requests were observed during 10 minutes (88 requests per minute).

›	 HTTP headers: 65% of the requests were sent without HTTP User Agent header. However, the others were sent with an

innocent-looking “Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)” User Agent, using the capability of the attack tool to

modify the value of this header. Browser-like Accept headers were not sent in the requests at all.

›	 The unusual pattern of access to application resources: The attack is directed at 37 application URLs (for example: /myaccount/

new_customer_register.asp, /products/subdepartment.asp, /home/home.asp, /products/product.asp, /scripts/contact_

submit.asp). These URLs are accessed consecutively from the attacking host. For each URL, 5-120 combinations of parameters

are tried, and the injected SQL snippet is placed in a different parameter in each combination. This is very different from the

access pattern of a human web user.

›	 Attack tool fingerprint: The sent SQL snippet is quite distinct and can be used to identify similar attacks from this tool.

Again we see that a combination of early warning signs is useful to identify an automated attack and activate appropriate

counter-measures.

11	See: http://www.imperva.com/download.asp?id=352 Hacker Intelligence Summary Report – An Anatomy of a SQL Injection Attack (Sept 2011)
12	To bypass input sanitation by the application, the automatic vulnerability scanner actually sends to each combination of URL and tested

parameter a sequence of 4 slight variations on the same SQL snippet.

14

Imperva’s Web Application Attack Report

4.2.4 - Combined Attacks
Some hosts are used to initiate several types of attacks. For example, looking at very active hosts in RFI, LFI and SQLi attacks during

August, two hosts showed up as major sources for both LFI and RFI, and one host was a major source for both RFI and SQLi (Table

6). At least some of these hosts are compromised servers. This shows that using automation, hosts can easily be used as a general-

purpose attack platform with multiple malicious capabilities. If a host is identified as malicious due to issuing a specific type of

attack, it is likely that it can issue other types of attacks in the near future.

Host Host Information
LFI (August) RFI (August) SQLi (August)

#attacks % #attacks % #attacks %

188.138.90.137
Compromised server,
zulu201.startdedicated.com
Location: Germany

9330 8.7 1185 3.3 -- --

94.23.12.105
Compromised server,
ns204767.ovh.net
Location: France

6529 6.1 12129 34.2 -- --

67.207.202.2 Location: United States -- -- 3042 8.6 3686 4.5

Table 6: Hosts participating in several types of attacks during August

4.2.5 - HTTP Protocol Violations
While not an attack per-se, we have often observed violations of the HTTP protocol in the traffic that accompanies attack attempts.

These violations included invalid HTTP methods, inclusion of invalid bytes inside parameters, etc. Obviously, this kind of traffic is

generated by custom scripts rather than standard web browsers. Thus, protocol violations are an indicator of automatic attacks.

HTTP violations may be generated inadvertently by sloppily-written hacking tools. However, we believe most of these the violations

are caused intentionally by attackers who attempt to confuse security measures and avoid blocking. For example, in many LFI and

Directory Traversal attacks, a Null byte is added to the end of the path of the accessed file. This is intended to bypass applications’

defense mechanism that appends “safe” file-type suffixes (like “.png” for image files) to any file path read from input parameters. The

Null byte signals the end of a file path, forcing the file system to ignore the appended suffix.

Looking at the number of HTTP protocol

violations that appeared in the monthly traffic

(Figure 6) shows a moderate incremental

trend in the last 6 months. This is different from

the findings of our previous report, where the

number of protocol violation showed a sharp

increase from December to February, but also

a steep decline during March-May.

Figure 6: Monthly HTTP protocol violation in the traffic

15

Imperva’s Web Application Attack Report

4.3	Technical Attacks
4.3.1 - SQL Injection

SQL Injection (SQLi) is an attack that exploits a security vulnerability occurring in the database layer of an application

(like queries). Using SQL injection the attacker can extract or manipulate the web application’s data. The attack is

viable when user input is either incorrectly filtered for string literal escape characters embedded in SQL statements

or user input is not strongly typed and thereby unexpectedly executed.

The monthly number of SQLi attacks is shown

in Figure 7. There were 18000-60000 SQLi

attacks each month on the observed sites

(34100 attacks per month on average). During

August there was an unusual SQLi activity:

more than 2 times the average rate for the

other months (about 28800).

Comparing these results to our previous

semi-annual report, the results are similar: the

monthly rate of SQLi attacks fluctuates around

30000 attacks per month.

4.3.2 - Remote File Inclusion

Remote File Inclusion (RFI) is an attack that allows an attacker to include a remote file, usually through a script, on

the web server. This attack can lead to data theft or manipulation, malicious code execution on the web server, or

malicious code execution on the application’s client side (such as Javascript which can lead to other attacks). This

vulnerability occurs due to the use of user-supplied input without proper validation.

The monthly occurrence of RFI attacks is

summarized in Figure 8. There were 7000-

35000 RFI attacks each month on the

observed sites (14200 attacks per month on

average). In August there were an unusually

high number of RFI attacks; excluding it the

average monthly rate of RFI attacks is 10000.

The monthly rate of RFI attacks during

November-May, as we previously reported,

was 5200 on average. This is consistent with

the rate we saw on June and November.

However, the monthly rate during July-

October, and especially during August,

was considerably higher. The difference is

only partially explained by the addition of

applications to our observation set.

Figure 7: SQLi attacks per month

Figure 8: RFI attacks per month

16

Imperva’s Web Application Attack Report

4.3.3 - Local File Inclusion

Local File Inclusion (LFI) is an attack that includes files on a server into the web server. This attack can lead to

malicious code execution on the web server. The vulnerability occurs when a page include is not properly sanitized,

and allows, for example, directory traversal characters to be injected. LFI attacks often append a Null character to the

included file path to bypass value sanitization.

The monthly occurrence of LFI is summarized

in Figure 9. There were 8670-106800 monthly

LFI attacks, with an average rate of 36400

per month. However, August was clearly an

unusual month with respect to LFI attack,

which is otherwise observed about 22000

times per month.

LFI attacks were not analyzed independently

in our previous Web Attacks Analysis Report,

in which they were aggregated into the

Directory Traversal category.

4.3.4 - Directory Traversal

Directory Traversal (DT) is an attack that orders an application to access a file that is not intended to be accessible

and expose its content to the attacker. The attack exploits insufficient security validation or insufficient sanitization of

user-supplied input file names, so that characters representing “traverse to parent directory” are passed through to

the file APIs.

The monthly occurrence of Directory Traversal

attacks is summarized in Figure 10. There were

34000-193400 DT attacks each month on the

observed sites (141200 attacks per month on

average). There were 42000 attacks per month

on average during November-May.

According to the data, attackers employ

Directory Traversal for several purposes,

including attempts to execute commands,

with patterns like ...\.\...\.\windows\system32\

ipconfig.exe and ../../../winnt/system32/cmd.

exe, and access sensitive configuration files,

using patterns like ..\\winnt\\win.ini.

Figure 9: LFI attacks per month

Figure 10: Directory Traversal attacks per month

17

Imperva’s Web Application Attack Report

4.3.5 - Cross Site Scripting

Cross Site Scripting (XSS) is an attack that lets the attacker execute scripts in a victim’s browser to hijack user sessions

and steal his credentials, deface web sites, insert hostile content, redirect users, hijack the user’s browser using

malware, etc. XSS flaws occur when an application includes user supplied data in a page sent to the browser without

properly validating or escaping that content.

The monthly volume of traffic related to Cross

Site Scripting is summarized in Figure 11. Cross

Site Scripting is targeted at web users rather

than servers. It is used to attack the application’s

client executing malicious browser code in the

context of the trusted application, potentially

abusing the trust between the user and the

application and vice versa. The traffic we have

been able to monitor represents the attacker’s

set up (see below) and not the traffic of

victimized clients. We observed 69800 monthly

XSS attacks on average, and an unusually high

XSS-related activity during August-October.

On the previous 6 months the average XSS-

related attacks were observed 42000 times

per month on average. This is consistent with

the June-July traffic statistics. The rise in XSS

traffic in August-October is mostly related to an

unusually high rate of a specific variant of XSS,

as detailed below.

4.4 Business Logic Attacks
A Business Logic Attack (BLA) is an attack which targets the logic of a business application. “Traditional”, technical,

application attacks contain malformed requests. On the other hand, business logic attacks include legitimate input

values. This lack of unusual content attributes makes a business logic attack difficult to detect. BLAs abuse the

functionality of the application, attacking the business directly. A BLA is further enhanced when combined with

automation, where botnets are used to challenge the business application.13

BLAs follow a legitimate flow of interaction of a user with the application. This interaction is guided by an understanding of how

specific sequences of operations affect the application’s functionality. Therefore, the abuser can lead the application to reveal

private information for harvesting, allocate her a disproportionate amount of shared resources, skew information shared with

other users, etc. The motivation for BLAs is that the attacker can convert these effects to monetary gains.

Figure 11: Cross Site Scripting traffic per month

13	See: http://www.imperva.com/resources/glossary/business_logic_attacks.html

18

Imperva’s Web Application Attack Report

4.4.1 - Email Extraction

Email extraction (also called email scraping) is the practice of scanning web applications and extracting the Email

addresses and other personal contact information that appear in it. These emails are then used for promotional

campaigns and similar marketing purposes. Email extraction is one of several activities that harvest data from web

applications against the intent of the data owners and the applications’ administrators.

Summary of the monthly Email extraction

attacks is shown in Figure 12. On average

there were 20000 such attacks each month,

but clearly there was a peak of activity during

September-October and much lower activity

during other months.

Email extraction is a “grey area” practice: attackers

earn easy money by selling information

extracted illegitimately from web applications.

The attack does not exploit vulnerabilities in

the application. Rather, the data is extracted

by automatically scanning the targeted

application, while imitating a user’s browsing

activity. To speed up the attack and avoid black

listing, several scans are run concurrently using

web proxies.

Email extraction is offered on the web both as

an online service (i.e., “pay on delivery”)14 and

as software tool for download. The notorious

“Beijing Express Email Address Extractor” (Figure

13), a software tool freely available on the web,

was responsible for over 95% of the Email

Extraction activity we identified. Usage of the

commercial software Advance Email Extractor15

was also seen in the traffic.

Hosts that sent Email extraction traffic to

the observed application had very unusual

geographic locations: Of the 9826 hosts, 3299

(34%) were from Senegal and 2382 (24%) were

from Ivory Coast. Other unusual countries

(Thailand, Malaysia, Ghana and Nigeria) were

also prominent in the list of attacks’ geographic

sources. Obviously, attackers are hiding their

tracks by employing remote and perhaps less

monitored hosts for this attack type.

14	See for example: http://www.iwebscraping.com/webscrapingproject.php?pn=email-scraping-or-extraction-service~~2
15	Developed by EMMA Labs: http://www.mailutilities.com/
16	See: http://www.mail-archive.com/lftp-devel@uniyar.ac.ru/msg00903.html

Figure 12: Email extraction attacks per month

Figure 13: Web description of Beijing Express Email Address Extractor16

19

Imperva’s Web Application Attack Report

4.4.2 - Comment Spamming

Comment spamming is a way to

manipulate the ranking of the spammer’s

web site within search results returned by

popular search engines. A high ranking

increases the number of potential visitors

and paying customers of this site. The

attack targets web applications that let

visitors submit content that contains

hyperlinks: the attacker automatically

posts random comments or promotions of

commercial services to publicly accessible

online forums, which contain links to the

promoted site.

Comment spamming is based on automatic

tools that masquerade as a human that surfs the

web, but with a “hidden agenda” of leaving traces of

good feedback (in various forms) to promoted sites.

The volume of traffic associated with comment spamming is presented in Figure 14. The observations from the last 6 months

show a long term trend of growth in traffic related to comment spam. It should be emphasized that not all of this traffic contains

the actual spam – the automatic tools must interact with the application like a user (for example, find a forum for posting data,

register as a user, login and find a popular thread for posting the spam) before actually injecting the spam link into the site.

We have observed several variants of

comment spamming within the monitored

traffic. For example:

›	 The spammer posted comments to an

application’s web forum. In some of

these posts the Referer HTTP header was

a URL of a Facebook page promoting

specific prescription drugs were given in

posts to (see Figure 15). This URL would

show up in the spammed site’s logs,

increasing the ranking of the promoted

site in search engine results.

›	 The spammer promoted the reputation-based ranking of specific answers in a discussion forum. In this application, experts

answer questions posted by users. Answers and experts are ranked and displayed based on users’ feedback (e.g. based on

correctness and usefulness). By artificially increasing the good reputation of specific answers, this promoted content becomes

more visible.

An unusual attribute of the observed Comment Spamming attacks is the geographic locations of the involved hosts: Hosts from

Russian Federation, Ukraine, Latvia and Poland were very active in this sort of attack. We note that this phenomenon was also

detected by other researchers through other means17.

Figure 14: Comment spamming attacks per month

Figure 15: Facebook page promoted by observed comment spam

17	For example, the top 3 and 7 out of 10 worst spammers ranked by spamhaus are from east-European countries:
http://www.spamhaus.org/statistics/spammers.lasso

20

Imperva’s Web Application Attack Report

Comment spamming can be tricky to identify, since a large part of the spammers traffic looks no different than the traffic generated

by an innocent user. Good indications of potential malicious activity of this kind are black lists of User Agent values and hosts’ IPs,

based on activity observed in many applications. Generic indications of automatic attacks, like high rate of requests and missing

HTTP headers that are normally sent by browsers, are relevant as well.

One of the mechanisms used by applications to defend against comment spammers is CAPTCHA challenges, which require the

user to visually identify a specific text within a non-trivial image. We have observed attempts by automatic tools to answer these

challenges, probably using a predefined pool of responses to challenges. Even if these attempts are mostly unsuccessful, with

enough retries the automatic spamming tool has a chance to eventually get the answer right and complete its spamming task.

21

Imperva’s Web Application Attack Report

5	Recommendations
Many of the attacks described in this report are not difficult to mitigate. However, we did find that Web applications face attacks

that are becoming more diverse, more technically sophisticated and more difficult to detect and block. Obviously, security

counter-measures must keep up with the threats to prevent damages and losses to the business and its customers. What are the

right mitigation steps? We’ve attempted to create a complete list to help security teams improve their odds.

In our last report, we made several recommendations which are still valid:

1.	 Deploy security solutions that detect automated attacks. This detection must be done as early as possible during the attack.

This theme is expanded below.

2.	 Detect and block attacks against known vulnerabilities. The knowledge base of exploitable weaknesses in the application

must be frequently updated.

3.	 Acquire intelligence on malicious sources and apply it in real time. Black lists of attacking hosts are still an efficient counter

measure. However, the lists must be up to date to be effective.

4.	 Participate in a security community and share data on attacks. The increased automation and scale of attacks leave a large

footprint on the web – but it can only be seen by looking at data gathered from a large set of potential victims.

Business Logic Attacks follow a legitimate flow of interaction of a user with the application. Therefore, the usual negative security

model of having signatures to detect “known bad traffic” has only limited value against these attacks. Drawing on the insights from

this report, we recommend additional steps for dealing with BLAs:

›	 Acquire intelligence on BLA sources and apply it in real time. For example, comment spammers are active long after they are

publicly unmasked. Intelligence must be focused per each attack type, since, as we saw, attackers using Comment Spam and

Email Extraction exhibit different attributes.

›	 Geographic information about traffic can help make security decisions in real time. For example, the analyzed BLA attacks

have very distinct geographic characteristics.

The increasing reliance of attackers on automation and the huge volume of malicious traffic the automatic tools generate mean

that it is crucial to detect attacks that are generated by such tools quickly, accurately and automatically. As a general guideline, a

small set of attributes of the traffic and the web client must be continuously measured and monitored. Deviations from the normal

profile of traffic should trigger close scrutiny by dedicated software and personnel.

An anti-automation arsenal is the linchpin of any security mechanism. This is true for traditional technical attacks, and it is also the

essence of the described BLAs. For example, if an attacker cannot extract Email addresses quickly using automation then the attack

is mitigated, since the attacker will search for a more lucrative target. A checklist for detecting and battling automation includes:

›	 Reputation-based detection: Acquire and use black lists of hosts employed by attackers.

›	 High click rates: Traffic shape is the most basic indicator of automated activity. Above an application-related threshold (e.g., 3

clicks per second), the application should delay or block the interchange with the web client.

›	 Technical attributes of the incoming traffic: Traffic generated by software tools often has technical characteristics (like specific

HTTP headers) that are different than traffic generated by common browsers. If this is not an expected usage scenario, block

such traffic.

›	 Repetition of business actions: For example, many login failures may indicate a password brute force attack. Of course, your

security device must be able to recognize such “deviations or strange behavior.18

›	 Challenging the application’s web client: Test if your application is really interacting with a browser. For example, “fake”

browsers do not have capabilities like Javascript execution. The application flow should contain sending Javascript code to

the client and verifying that is was actually executed.

›	 Checking that a human is “in the loop”: Test that the end user is human by incorporating capabilities like CAPTCHA.

18	Web application firewalls can do this.

Imperva
Headquarters
3400 Bridge Parkway, Suite 200
Redwood Shores, CA 94065
Tel: +1-650-345-9000
Fax: +1-650-345-9004

Toll Free (U.S. only): +1-866-926-4678
www.imperva.com

© Copyright 2012, Imperva
All rights reserved. Imperva, SecureSphere, and "Protecting the Data That Drives Business" are registered trademarks of Imperva.
All other brand or product names are trademarks or registered trademarks of their respective holders. #HII-SA-SECURITY-SUMMARY-#2-0112rev1

Imperva’s Web Application Attack Report

Hacker Intelligence Initiative Overview
The Imperva Hacker Intelligence Initiative will be going inside the cyber-underground and providing analysis of the trending hacking

techniques and interesting attack campaigns from the past month. A part of Imperva’s Application Defense Center research arm,

the Hacker Intelligence Initiative (HII), is focused on tracking the latest trends in attacks, Web application security and cyber-crime

business models with the goal of improving security controls and risk management processes.

