
Dissecting a Hacktivist Attack

1. Executive Summary

At the end of March 2012, the Lulzsec hackers had attacked http://www.militarysingles.com/ and disclosed sensitive information

on more than 170,000 members.1

This report analyzes the anatomy of the attack methods deployed by the “new” Lulzsec. Overall, the attack, using Remote File

Inclusion, is nothing new. But it underscores how today’s hackers adhere to Sun-Tzu’s maxim: “Strike where your enemy is most

vulnerable.” RFI vulnerabilities are prevalent in PHP applications which comprise 77% of total applications on the web.

This attack also underscores the need for proper password encryption. In this case, archaic methods of password encryption

meant hackers could decrypt the full list of passwords in just 9 hours.

Finally, military service professionals need to recognize that social networks are dangerous and that a different standard of

involvement applies to men and women in uniform. As a special target for hacktivists and foreign hackers, the military should set

policies in place for servicemen participating in social networks.

Hacker Intelligence Initiative, Monthly Trend Report #10

May 2012

1	 http://www.zdnet.com/blog/security/lulzsec-hacks-military-singles/11088

2Report #10, May 2012

Hacker Intelligence Initiative, Monthly Trend Report

2. Detailed Analysis
Lulzsec was able to load and execute a file on the server as shown in this screenshot:

2.1 File upload
The fundamental tenet of Web 2.0, user-generated content, is also the Achilles Heel from a security standpoint. Why?
Allowing the upload of user-generated content to the website can be extremely dangerous as the server which is
usually considered by other users and the application itself as “trusted” now hosts content that can be generated by
a malicious source.

However, in Web 2.0 applications, the upload of user-generated content cannot be avoided. For example, imagine social
networks without pictures and webmail without attachments. Very dull user, indeed.

Any uploaded malicious content can be involved in numerous attacks such as:

›	 File execution – where the uploaded file can be executed on the server. The server trusts the file and allows it to run.

›	 Local File Inclusion – where the file contains some PHP script. In Local File Inclusion, the application trusts the code
hosted on the server and allows it to run.

›	 Malware hosting – where the file is a malware or infected with malware. The user trusts the web application and
downloads the content.

›	 Cross-site scripting – where the file contains a script, served from the victim’s environment application context. The
browser trusts that code to access the user data related to the application (such as cookies).

›	 Phishing – where the file is an HTML file that masquerades as genuine application functionality (such as login) of the
victim application. The user trusts that the UI is genuine.

2.1.1 File upload vulnerability
The militarysingles.com had an upload functionality to support the upload of user’s profile pictures.

The application designer was apparently aware of the perils of hosting user generated content. In order to prevent rogue
uploads, a filter functionality was implemented in order to restrict the upload of files only to picture files.

But the filter had two major flaws:

›	 It validates picture format by extension only, so hackers can upload 1.txt.jpg – that is not a picture and is, in fact, a
textual file.

	

3Report #10, May 2012

Hacker Intelligence Initiative, Monthly Trend Report

›	 The filter seems to trust the content type as specified by a browser – which is a client-side control instead of properly
checking files on server side. So an attacker, using a proxy to fiddle with traffic after it had passed client-side security
implemented on the browser, was able to change the filename without changing the “image” content-type.

	

	 And the arbitrary file gets uploaded:

	

We assume the attackers performed this process and changed the uploaded file extension to be PHP – and therefore
executable on victim’s server.

We were able to find record of such uploads:

That’s probably how the LulzSec attacker has obtained control over the server.

2.1.2 File upload: Getting it right
In order to refrain from allowing malicious user-untrusted content to abuse the trust that’s related with the server’s trusted
content, the server needs to isolate the original trusted content and the new, user-generated, untrusted content. Doing
so requires:

›	 Assigning minimal permissions to the uploaded content – especially not giving the file executable permissions.

›	 Hosting user-generated content on a different domain. That way, even if the code is malicious it’s not evaluated in the
context of your site. For example - Facebook stores user uploads on fbcdn.net domain.

›	 Hosting user-generated content on a different machine – that way, even if the code gets executed, it’s not executing
on the machine that stores sensitive data and resources. That machine needs to be considered as untrusted and
have minimal permissions. For example, Facebook stores user uploads on fbcdn.net domain which is hosted on
Akamai machines.

Another key action – filter the uploaded content. This can be done in several ways:

›	 Whitelisting – make sure the content is a valid instance of the file type that the application expects – e.g., be certain
that the picture is a valid jpeg file.

›	 Blacklisting – scan the file for malicious content, using a relevant scanner, e.g. antivirus to detect malware; HTML
scanner to detect XSS.

›	 All security checks need to be implemented on the server-side and not trust client, as the client cannot be trusted.

4Report #10, May 2012

Hacker Intelligence Initiative, Monthly Trend Report

2.2 Storing passwords
As a result of the code execution, the attacker has gained both full control over the server and the data stored within it. The
data included very sensitive details (PII) about the users such as full name, address, phone number, email address, and more.

Even when all users details on the application are exposed, passwords are still considered to be sensitive, as users often
reuse the same passwords over many applications. had the passwords been properly stored, it would be difficult for the
attacker to find out the customer’s passwords.

2.2.1 Cracking passwords
In the militarysingles.com hack, passwords were not stored in plaintext but were hashed. How were the passwords
breached? The problem was that the hash was created using the MD5 algorithm and no additional salting2 was involved.
According to one blog,3 the vast majority (more than 90%) of the disclosed hashes were leaked were cracked in 9 hours.

The blog also provided a nice visualization of the common passwords, which is very consistent with Imperva’s ADC findings
in similar cases.4

2.2.2 Storing passwords - Getting it right
What is the correct way to store passwords?

›	 First, use a modern strong hash function – MD5 is not suitable for modern applications – as shown in the table below.5

	

2	 http://en.wikipedia.org/wiki/Salt_(cryptography)
3	 http://iqsecur.blogspot.ca/2012/04/analysis-of-leaked-militarysinglesorg.html
4	 http://www.imperva.com/docs/WP_Consumer_Password_Worst_Practices.pdf
5	 http://valerieaurora.org/hash.html

Hacker Intelligence Initiative, Monthly Trend Report

Imperva
3400 Bridge Parkway, Suite 200
Redwood City, CA 94065

Tel: +1-650-345-9000
Fax: +1-650-345-9004	
www.imperva.com

© Copyright 2012, Imperva
All rights reserved. Imperva, SecureSphere, and “Protecting the Data That Drives Business” are registered trademarks of Imperva.
All other brand or product names are trademarks or registered trademarks of their respective holders. #HII-MAY#10-2012-0512rev1

	 A key best-practice involves using cryptographic hashes from the SHA-2 family, such as SHA-256. In fact, today, NIST6
specifications “Federal agencies should stop using SHA-1 for digital signatures, digital time stamping, and other
applications that require collision resistance as soon as practical and must use the SHA-2 family of hash functions for
these applications after 2010.”

›	 Second, add salt to the hash function – this would make the cracker work much harder as it disables the use of
rainbow tables.

›	 Third, enforce a password policy that would force users create less predictable passwords. When users are allowed to
choose their password, they tend to chose very predictable passwords (such as ‘123456’.)

3. Summary and Conclusions
The militarysingles.com episode illustrates:

›	 Web 2.0 has come home to roost. As we point out, the main driver of today’s Internet is also its Achilles Heel: user-
generated content – Worse, the current web landscape won’t make things better anytime soon. Approximately
77% of Web applications utilize PHP, which is especially vulnerable to Remote File Inclusion (RFI) attacks. In the case
of militarysingles.com, users upload photos. This episode highlights how savvy hackers bypass simple checks and
filters to execute malicious code on servers, in turn infecting other machines or stealing data. Many in the security
community have yet to notice.

›	 Social networking and the public sector don’t mix – In addition to the Web application security concerns, the
fact that hackers targeted MilitarySingles should not be overlooked. Consideration should be paid to the fact that
hacktivists are increasingly using social engineering techniques to infiltrate targets. Imperva calls into question if
military and government employees should be held to a higher standard when it comes to social networking.

›	 The need for enterprises to pay closer attention to password encryption. Strong password policies aren’t enough.
In addition, enterprises must use of a special form of encryption known has “salted digests.” A salted value should
increase the cost of guessing the password so that financially-motivated hackers will not make such an investment.

Hacker Intelligence Initiative Overview
The Imperva Hacker Intelligence Initiative goes inside the cyber-underground and provides analysis of the trending hacking
techniques and interesting attack campaigns from the past month. A part of Imperva’s Application Defense Center research
arm, the Hacker Intelligence Initiative (HII), is focused on tracking the latest trends in attacks, Web application security and
cyber-crime business models with the goal of improving security controls and risk management processes.

6	 http://csrc.nist.gov/groups/ST/hash/policy.html

